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Summary. The basic conceptions of matrix algebra are introduced. The matrix is
introduced as the finite sequence of sequences with the same length, i.e. as a sequence of
lines. There are considered matrices over a field, and the fact that these matrices with addition
form an Abelian group is proved.

MML Identifier: MATRIX_1.

WWW: http://mizar.org/JFM/Vol3/matrix_1.html

The articles [11], [6], [13], [14], [4], [5], [2], [10], [8], [3], [7], [12], [9], and [1] provide the notation
and terminology for this paper.

For simplicity, we follow the rules:x is a set,i, j, n, m are natural numbers,D is a non empty
set,K is a non empty double loop structure,s is a finite sequence,a, a1, a2, b1, b2, d are elements
of D, p, p1, p2 are finite sequences of elements ofD, andF is an add-associative right zeroed right
complementable Abelian non empty double loop structure.

Let f be a finite sequence. We say thatf is tabular if and only if:

(Def. 1) There exists a natural numbern such that for everyx such thatx∈ rng f there existsssuch
thats= x and lens= n.

Let us observe that there exists a finite sequence which is tabular.
One can prove the following propositions:

(1) 〈〈d〉〉 is tabular.

(2) m 7→ (n 7→ x) is tabular.

(3) For everys holds〈s〉 is tabular.

(4) For all finite sequencess1, s2 such that lens1 = n and lens2 = n holds〈s1,s2〉 is tabular.

(5) /0 is tabular.

(6) 〈 /0, /0〉 is tabular.

(7) 〈〈a1〉,〈a2〉〉 is tabular.

(8) 〈〈a1,a2〉,〈b1,b2〉〉 is tabular.

Let f be a binary relation. We say thatf is empty yielding if and only if:

(Def. 2) For every sets such thats∈ rng f holdss = 0.
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Let D be a set. One can verify that there exists a finite sequence of elements ofD∗ which is
tabular.

Let D be a set. A matrix overD is a tabular finite sequence of elements ofD∗.
Let D be a non empty set. Observe that there exists a matrix overD which is non empty yielding.
We now state the proposition

(9) s is a matrix overD iff there existsn such that for everyx such thatx∈ rngs there existsp
such thatx = p and lenp = n.

Let us considerD, m, n. A matrix overD is called a matrix overD of dimensionm× n if:

(Def. 3) len it= m and for everyp such thatp∈ rng it holds lenp = n.

Let us considerD, n. A matrix overD of dimensionn is a matrix overD of dimensionn× n.
Let K be a non empty 1-sorted structure. A matrix overK is a matrix over the carrier ofK. Let

us considern. A matrix overK of dimensionn is a matrix over the carrier ofK of dimensionn×
n. Let us considerm. A matrix overK of dimensionn × m is a matrix over the carrier ofK of
dimensionn× m.

We now state a number of propositions:

(10) m 7→ (n 7→ a) is a matrix overD of dimensionm× n.

(11) For every finite sequencep of elements ofD holds〈p〉 is a matrix overD of dimension 1
× lenp.

(12) For all p1, p2 such that lenp1 = n and lenp2 = n holds 〈p1, p2〉 is a matrix overD of
dimension 2× n.

(13) /0 is a matrix overD of dimension 0× m.

(14) 〈 /0〉 is a matrix overD of dimension 1× 0.

(15) 〈〈a〉〉 is a matrix overD of dimension 1.

(16) 〈 /0, /0〉 is a matrix overD of dimension 2× 0.

(17) 〈〈a1,a2〉〉 is a matrix overD of dimension 1× 2.

(18) 〈〈a1〉,〈a2〉〉 is a matrix overD of dimension 2× 1.

(19) 〈〈a1,a2〉,〈b1,b2〉〉 is a matrix overD of dimension 2.

In the sequelM, M1, M2 denote matrices overD.
Let M be a tabular finite sequence. The functor widthM yields a natural number and is defined

by:

(Def. 4)(i) There existss such thats∈ rngM and lens= widthM if lenM > 0,

(ii) width M = 0, otherwise.

Next we state the proposition

(20) If lenM > 0, then for everyn holds M is a matrix overD of dimension lenM × n iff
n = widthM.

Let M be a tabular finite sequence. The indices ofM yielding a set is defined as follows:

(Def. 5) The indices ofM = [:domM, SegwidthM :].

Let D be a set, letM be a matrix overD, and let us consideri, j. Let us assume that〈〈i, j〉〉 ∈ the
indices ofM. The functorM ◦ (i, j) yields an element ofD and is defined as follows:

(Def. 6) There exists a finite sequencep of elements ofD such thatp = M(i) andM ◦ (i, j) = p( j).
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The following proposition is true

(21) If lenM1 = lenM2 and widthM1 = widthM2 and for alli, j such that〈〈i, j〉〉 ∈ the indices of
M1 holdsM1◦ (i, j) = M2◦ (i, j), thenM1 = M2.

In this article we present several logical schemes. The schemeMatrixLambdadeals with a non
empty setA , a natural numberB, a natural numberC , and a binary functorF yielding an element
of A , and states that:

There exists a matrixM overA of dimensionB × C such that for alli, j if 〈〈i, j〉〉 ∈ the
indices ofM, thenM ◦ (i, j) = F (i, j)

for all values of the parameters.
The schemeMatrixEx deals with a non empty setA , a natural numberB, a natural numberC ,

and a ternary predicateP , and states that:
There exists a matrixM overA of dimensionB × C such that for alli, j if 〈〈i, j〉〉 ∈ the
indices ofM, thenP [i, j,M ◦ (i, j)]

provided the parameters meet the following requirements:
• For all i, j such that〈〈i, j〉〉 ∈ [:SegB, SegC :] and for all elementsx1, x2 of A such

thatP [i, j,x1] andP [i, j,x2] holdsx1 = x2, and
• For all i, j such that〈〈i, j〉〉 ∈ [:SegB, SegC :] there exists an elementx of A such that

P [i, j,x].
We now state several propositions:

(23)1 For every matrixM overD of dimension 0× m holds lenM = 0 and widthM = 0 and the
indices ofM = /0.

(24) Supposen > 0. Let M be a matrix overD of dimensionn × m. Then lenM = n and
widthM = m and the indices ofM = [:Segn, Segm:].

(25) For every matrixM overD of dimensionn holds lenM = n and widthM = n and the indices
of M = [:Segn, Segn:].

(26) For every matrixM overD of dimensionn × m holds lenM = n and the indices ofM =
[:Segn, SegwidthM :].

(27) For all matricesM1, M2 overD of dimensionn× m holds the indices ofM1 = the indices
of M2.

(28) LetM1, M2 be matrices overD of dimensionn× m. Suppose that for alli, j such that〈〈i,
j〉〉 ∈ the indices ofM1 holdsM1◦ (i, j) = M2◦ (i, j). ThenM1 = M2.

(29) LetM1 be a matrix overD of dimensionn and giveni, j. If 〈〈i, j〉〉 ∈ the indices ofM1, then
〈〈 j, i〉〉 ∈ the indices ofM1.

Let us considerD and letM be a matrix overD. The functorMT yielding a matrix overD is
defined by the conditions (Def. 7).

(Def. 7)(i) len(MT) = widthM,

(ii) for all i, j holds〈〈i, j〉〉 ∈ the indices ofMT iff 〈〈 j, i〉〉 ∈ the indices ofM, and

(iii) for all i, j such that〈〈 j, i〉〉 ∈ the indices ofM holdsMT ◦ (i, j) = M ◦ ( j, i).

Let us considerD, M, i. The functor Line(M, i) yielding a finite sequence of elements ofD is
defined as follows:

(Def. 8) lenLine(M, i) = widthM and for everyj such thatj ∈ SegwidthM holds Line(M, i)( j) =
M ◦ (i, j).

The functorM�,i yields a finite sequence of elements ofD and is defined by:

1 The proposition (22) has been removed.
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(Def. 9) len(M�,i) = lenM and for everyj such thatj ∈ domM holdsM�,i( j) = M ◦ ( j, i).

Let us considerD, let M be a matrix overD, and let us consideri. Then Line(M, i) is an element
of DwidthM. ThenM�,i is an element ofDlenM.

In the sequelA, B denote matrices overK of dimensionn.
Let us considerK, n. The functorKn×n yields a set and is defined as follows:

(Def. 10) Kn×n = ((the carrier ofK)n)n.

The functor

 0 . . . 0
...

...
...

0 . . . 0


n×n

K

yields a matrix overK of dimensionn and is defined as follows:

(Def. 11)

 0 . . . 0
...

...
...

0 . . . 0


n×n

K

= n 7→ (n 7→ 0K).

The functor

 1 0
...

0 1


n×n

K

yielding a matrix overK of dimensionn is defined by the condi-

tions (Def. 12).

(Def. 12)(i) For every i such that 〈〈i, i〉〉 ∈ the indices of

 1 0
...

0 1


n×n

K

holds

 1 0
...

0 1


n×n

K

◦ (i, i) = 1K , and

(ii) for all i, j such that〈〈i, j〉〉 ∈ the indices of

 1 0
...

0 1


n×n

K

and i 6= j holds

 1 0
...

0 1


n×n

K

◦ (i, j) = 0K .

Let us considerA. The functor−A yielding a matrix overK of dimensionn is defined by:

(Def. 13) For alli, j such that〈〈i, j〉〉 ∈ the indices ofA holds(−A)◦ (i, j) =−(A◦ (i, j)).

Let us considerB. The functorA+B yields a matrix overK of dimensionn and is defined as follows:

(Def. 14) For alli, j such that〈〈i, j〉〉 ∈ the indices ofA holds(A+B)◦(i, j) = (A◦(i, j))+(B◦(i, j)).

Let us considerK, n. Note thatKn×n is non empty.
We now state two propositions:

(30) If 〈〈i, j〉〉 ∈ the indices of

 0 . . . 0
...

...
...

0 . . . 0


n×n

K

, then

 0 . . . 0
...

...
...

0 . . . 0


n×n

K

◦ (i, j) = 0K .

(31) x is an element ofKn×n iff x is a matrix overK of dimensionn.

Let us considerK, n. A matrix overK of dimensionn is said to be a diagonaln-dimensional
matrix overK if:
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(Def. 15) For alli, j such that〈〈i, j〉〉 ∈ the indices of it and it◦ (i, j) 6= 0K holdsi = j.

In the sequelA, B, C denote matrices overF of dimensionn.
One can prove the following propositions:

(32) A+B = B+A.

(33) (A+B)+C = A+(B+C).

(34) A+

 0 . . . 0
...

...
...

0 . . . 0


n×n

F

= A.

(35) A+−A =

 0 . . . 0
...

...
...

0 . . . 0


n×n

F

.

Let us considerF , n. The functorFn×n
G yields a strict Abelian group and is defined by:

(Def. 16) The carrier ofFn×n
G = Fn×n and for allA, B holds (the addition ofFn×n

G )(A, B) = A+B and

the zero ofFn×n
G =

 0 . . . 0
...

...
...

0 . . . 0


n×n

F

.
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[6] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
zfmisc_1.html.
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