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Summary. The basic conceptions of matrix algebra are introduced. The matrix is
introduced as the finite sequence of sequences with the same length, i.e. as a sequence of
lines. There are considered matrices over a field, and the fact that these matrices with addition
form an Abelian group is proved.
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The articles[[11],[16],[[1B],[114],T4],15],12],[10],18],18],[[7],[12],[[9], and [1] provide the notation
and terminology for this paper.

For simplicity, we follow the rulesx is a setj, j, n, mare natural number§) is a non empty
set,K is a non empty double loop structuseis a finite sequence, ai, az, by, by, d are elements
of D, p, p1, p2 are finite sequences of elementdyfandF is an add-associative right zeroed right
complementable Abelian non empty double loop structure.

Let f be a finite sequence. We say tHds tabular if and only if:

(Def. 1) There exists a natural numbesuch that for every such thai € rngf there exists such
thats=xand lers=n.

Let us observe that there exists a finite sequence which is tabular.
One can prove the following propositions:

(1) ((d)) is tabular.

(2) m— (n—Xx) is tabular.

(3) Foreverysholds(s) is tabular.

(4) For all finite sequences, s, such that leis; = nand lers; = n holds(s;,s,) is tabular.
(5) O0istabular.

(6) (0,0) is tabular.

(7) ((a1),(ap)) is tabular.

(8) ((an,a2),(b1,hy)) is tabular.

Let f be a binary relation. We say thatis empty yielding if and only if:

(Def. 2) For every setsuch thas € rngf holdss = 0.
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Let D be a set. One can verify that there exists a finite sequence of elemddtswifich is
tabular.

Let D be a set. A matrix oveD is a tabular finite sequence of elementosf
Let D be a non empty set. Observe that there exists a matrix@wéich is non empty yielding.
We now state the proposition

(9) sis amatrix oveD iff there existsn such that for every such thai € rngsthere exist
such thak = pand lenp=n.

Let us consideb, m, n. A matrix overD is called a matrix oveb of dimensiorm x nif:
(Def. 3) lenit=mand for everyp such thatp € rngit holds lerp = n.

Let us consideb, n. A matrix overD of dimensiom is a matrix oveD of dimensiomn x n.

Let K be a non empty 1-sorted structure. A matrix oleis a matrix over the carrier df. Let
us considen. A matrix overK of dimensionn is a matrix over the carrier df of dimensionn x
n. Let us considem. A matrix overK of dimensionn x mis a matrix over the carrier df of
dimensiom x m.

We now state a number of propositions:

(10) m+— (n+— a) is a matrix oveD of dimensiorm x n.

(11) For every finite sequengeof elements oD holds(p) is a matrix oveD of dimension 1
x lenp.

(12) For all p1, p2 such that lep; = n and lenp, = n holds (p1, pz) is a matrix overD of
dimension 2x n.

(13) 0is a matrix oveD of dimension Ox m.
(14) (0) is a matrix oveD of dimension 1x 0.
(15) ((a)) is a matrix oveD of dimension 1.
A7) ({a1,a2)) is a matrix oveD of dimension 1x 2.

(18)

(
(
(16) (0,0) is a matrix oveD of dimension 2x 0.
(
({(a1), (a2)) is a matrix oveD of dimension 2x 1.
(

(19) ((aa,a2), (b1,b)) is a matrix oveiD of dimension 2.

In the sequeM, M1, M> denote matrices ovéDd.
Let M be a tabular finite sequence. The functor widtlgields a natural number and is defined
by:

(Def. 4)(i) There exists such thas € rngM and lers = widthM if lenM > 0O,
(i)  widthM = 0, otherwise.

Next we state the proposition

(20) If lenM > O, then for everyn holdsM is a matrix overD of dimension letM x n iff
n=widthM.

Let M be a tabular finite sequence. The indice$/ofielding a set is defined as follows:
(Def.5) The indices oM = domM, SegwidthiM .

Let D be a set, leM be a matrix oveD, and let us consider j. Let us assume thdt, j) € the
indices ofM. The functoM o (i, j) yields an element dD and is defined as follows:

(Def. 6) There exists a finite sequeneef elements oD such thatp = M(i) andMo (i, j) = p(j).
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The following proposition is true

(21) IflenM; = lenM2 and widthM; = widthM, and for alli, j such tha{(i, j) € the indices of
M1 holdsMj o (i, j) = M2o(i, ), thenMy = M.

In this article we present several logical schemes. The schdairixLambdadeals with a non
empty set4, a natural numbeB, a natural numbeg, and a binary functofF yielding an element
of 4, and states that:

There exists a matrill over4 of dimensionB x C such that for all, j if (i, j) € the
indices ofM, thenMo (i, ) = F (i, j)
for all values of the parameters.

The schemdiatrixEx deals with a non empty se, a natural numbef, a natural numbec,
and a ternary predicat2, and states that:

There exists a matrill over.4 of dimensionB x € such that for all, j if (i, j) € the
indices ofM, then?[i, j,Mo (i, j)]
provided the parameters meet the following requirements:

e Foralli, j such that(i, j} € [ SegB, SegC] and for all elementsy, x; of 4 such
thatP[i, j,x1] andP[i, j,X2] holdsx; = xo, and

e Foralli, j such that{i, j} € [ SegB, SegC ] there exists an elemerbf 4 such that
Pli, j,X.

We now state several propositions:

(23@ For every matrixM overD of dimension 0x m holds lerM = 0 and widtiM = 0 and the
indices ofM = 0.

(24) Supposen > 0. Let M be a matrix oveD of dimensionn x m. Then lerM = n and
widthM = mand the indices d¥l = [: Segn, Segn.

(25) For every matrisM overD of dimensiom holds lerM = n and widthM = n and the indices
of M = [ Seon, Segn].

(26) For every matriXM over D of dimensionn x m holds lerM = n and the indices oM =
[ Segn, SegwidthM .

(27) For all matricedv1, M2 overD of dimensionn x mholds the indices o1, = the indices
of Ma.

(28) LetM1, M2 be matrices oveb of dimensionn x m. Suppose that for all j such thati,
j) € the indices oM holdsM; o (i, j) = M2o (i, j). ThenMy = Ma.

(29) LetM; be a matrix oveD of dimensiom and given, j. If (i, j) € the indices oM, then
(j,1) € the indices oM.

Let us consideD and letM be a matrix oveD. The functorM' yielding a matrix oveD is
defined by the conditions (Def. 7).

(Def. 7)()) lenMT) = widthM,
(i) foralli, j holds(i, j) € the indices oM iff (j, i) € the indices oM, and
(iiiy forall i, j such that(j, i) € the indices oM holdsMT o (i, j) = Mo (j,i).

Let us consideD, M, i. The functor LinéM, i) yielding a finite sequence of elementshfs
defined as follows:

(Def. 8) lenLinéM,i) = widthM and for everyj such thatj € SegwidtiM holds LingM,i)(j) =
Mo (i, ).

The functorMp;; yields a finite sequence of elementdband is defined by:

1 The proposition (22) has been removed.
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(Def. 9) lenMg;) = lenM and for everyj such thatj € domM holdsMgi(j) = Mo (j,i).

Let us consideb, letM be a matrix oveb, and let us considér Then LingM, i) is an element
of DWAM ' ThenM; is an element ob'®™,

In the sequeA, B denote matrices ové$ of dimensiom.

Let us consideK, n. The functolK™" yields a set and is defined as follows:

(Def. 10) K™ = ((the carrier ofK)™".

0 0 nxn
The functor : . yields a matrix oveK of dimensiom and is defined as follows:
0 ... 0/,
0 0 nxn
(Def. 11) Do =n+— (n— 0k).
0 ... 0/,
1 0 nxn
The functor yielding a matrix oveK of dimensionn is defined by the condi-
0 1/«
tions (Def. 12).
1 O nxn
(Def. 12)(i) For every i such that (i,i) € the indices of holds
0 1/«
1 0 nxn
o(i,i) =1k, and
0 1/«
1 O nxn
(i)  for all i, j such that(i, j) € the indices of andi # j holds
0 1/«
1 0 nxn
. © (|7 ]) = OK
0 1/«

Let us consideA. The functor—A yielding a matrix oveK of dimensiom is defined by:
(Def. 13) For alli, j such that(i, j) € the indices ofA holds(—A) o (i, j) = —(Ao (i, ])).

Let us consideB. The functorA+ B yields a matrix oveK of dimensiom and is defined as follows:
(Def. 14) For alli, j such thafi, j) € the indices oA holds(A+B)o (i, j) = (Ao (i, )+ (Bo(i,])).

Let us consideK, n. Note thatk"™*" is non empty.
We now state two propositions:

0 O nxn O O nxn

(30) If (i, j) etheindicesof| : -. Jthenf @ - o(i,j)=0k.
0 ... 0/, 0 ... 0/,

(31) xis an element oK™"iff x is a matrix oveiK of dimensiom.

Let us consideK, n. A matrix overK of dimensionn is said to be a diagonal-dimensional
matrix overK if:
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(Def. 15) For alli, j such thagi, j) € the indices of itand it (i, j) # Ok holdsi = j.

In the sequeh, B, C denote matrices ovét of dimensiom.
One can prove the following propositions:

(32) A+B=B+A

(33) (A+B)+C=A+(B+C).

0 0 nxn
(B4) A+| @ - —A
0 ... 0/,
o 0 nxn
@5) A+-A=| : -
0..0

F

Let us consideF, n. The functor=0*" yields a strict Abelian group and is defined by:

(Def. 16) The carrier oFZ*" = F™" and for allA, B holds (the addition of{*")(A, B) = A+Band

O O nxn
the zero ofF 0 " =
0O ... 0 F
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