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Summary. Notions of domains of submodules, join and meet of finite sequences of
submodules and quotient modules. A few basic theorems and schemes related to these notions
are proved.
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The articlesl[18],[[5],[[18],[3],[4],[[2], [1], [12],[19],[[11],[[14],[I5],[[],[17],[[16] [15] [[10], 18],
and [9] provide the notation and terminology for this paper.

1. SCHEMES

In this article we present several logical schemes. The sclidemeentEcdeals with a sefd and a
unary predicate?, and states that:
Let X1, X2 be elements of. Suppose for every satholdsx € X; iff ?[x] and for
every sek holdsx € X, iff P[X]. ThenX; =X,
for all values of the parameters.
The schem&JnOpEqdeals with a non empty set and a unary functofF yielding a set, and
states that:
Let f1, f2 be unary operations ofi. Suppose for every elemeabf 4 holdsfi(a) =
¥ (a) and for every elemerg of 4 holdsf,(a) = #(a). Thenf; = f;
for all values of the parameters.
The schem@riOpEqdeals with a non empty set and a ternary functof yielding a set, and
states that:
Let f1, f> be ternary operations aoff. Suppose for all elements b, ¢ of 4 holds
fi(a, b, c) = F(a,b,c) and for all elements, b, c of 4 holdsf,(a, b, c) = F(a,b,c).
Then f]_ = f2
for all values of the parameters.
The schem&uaOpEqdeals with a non empty set and a 4-ary functoff yielding a set, and
states that:
Let f1, f, be quadrary operations ofi. Suppose for all elements b, c, d of 4
holdsfi(a, b, ¢, d) = 7 (a,b,c,d) and for all elements, b, ¢, d of 4 holds f,(a, b,
c,d) = F(ab,c,d). Thenf, = f;
for all values of the parameters.
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The schemd-raenkell Exdeals with non empty setd, B, a unary functor¥ yielding an
element ofB, and a unary predicatg, and states that:
There exists a subs8bf B such thaS= { ¥ (x); x ranges over elements &f: P[] }
for all values of the parameters.
The schemér 0 deals with a hon empty set, an elementB of 4, and a unary predicat@,
and states that:
P[B]
provided the parameters satisfy the following condition:
e B e {a;aranges over elements gf : P[a]}.
The schemér 1 deals with a sefl, a non empty seB, an element of B, and a unary predicate
P, and states that:
C € 4iff P[]
provided the following condition is satisfied:
e 4 ={aaranges over elements &: P[a]}.
The schemé&T 2 deals with a sefl, a non empty seB, an element of B, and a unary predicate
P, and states that:
P[C]
provided the parameters satisfy the following conditions:
e Ce€4,and
e 4 ={aaranges over elements &: P[a]}.
The schemér 3 deals with a sefd, a setB, a non empty set’, and a unary predicat&, and
states that:
4 ¢ B iff there exists an elememtof C such that2 = aand?[a]
provided the parameters meet the following requirement:
e B ={a;aranges over elements of: P[a]}.
The schemér 4 deals with non empty set&, B, a setC, an elementD of 4, a unary functor
F yielding a set, and two binary predicat@sQ, and states that:
D e F(C) iff for every elemenb of B such thab € ¢ holdsP[D,b]
provided the following requirements are met:
e 7(C)={aaranges over elements &f: Q|a, (|}, and
e QD, (] iff for every elemenb of B such thab € C holds?[D, b].

2. AUXILIARY THEOREMS ON FREEMODULES

For simplicity, we follow the rulesxis a setK is a ring,r is a scalar oK, V is a left module over
K, a, b, a1, ap are vectors oV, A, A;, Ay are subsets of, | is a linear combination of\, W is a
subspace o¥, andL; is a finite sequence of elements of $ulp.

The following propositions are true:

(1) If Kis non trivial andA is linearly independent, ther/ Gt A.

(2) Ifa¢ A thenl(a) =0k.

(3) If Kistrivial, then for every holds the support df= 0 and Lin(A) is trivial.

(4) IfVis non trivial, then for evenA such that is base hold#\ # 0.

(5) If AiUAy s linearly independent andl; missesAy, then Lin(A;) NLin(Az) = Oy.

(6) If( A)is base andh = A UA; andA; missesAy, thenV is the direct sum of LifA;) and
Lin(A).

3. DOMAINS OF SUBMODULES

Let us consideK, V. A non empty set is called a non empty set of submodul&sitf

(Def. 1) Ifx €it, thenxis a strict subspace &f.
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Let us consideK, V. Then SulV) is a non empty set of submodules\of

Let us consideK, V and letD be a non empty set of submodulesofWe see that the element
of D is a strict subspace of.

Let us consideK, V and letD be a non empty set of submoduled/ofObserve that there exists
an element oD which is strict.

Let us consideK, V. Let us assume that is non trivial. A strict subspace &f is said to be a
line of V if:

(Def. 2) There exista such that # Oy and it=[]*a.
Let us consideK, V. A non empty set is called a non empty set of line¥ af:
(Def. 3) Ifxeit, thenxis aline ofV.

Let us consideK, V. The functor line§V) yielding a non empty set of lines df is defined as
follows:

(Def. 4) xelinegV) iff xis aline ofV.

Let us consideK, V and letD be a non empty set of lines ¥f We see that the element bfis
aline ofV.

Let us consideK, V. Let us assume th&t is non trivial andV is free. A strict subspace df is
said to be a hiperplane dfif:

(Def. 5) There exista such that # Oy andV is the direct sum of]*aand it.
Let us consideK, V. A non empty set is called a non empty set of hiperplanéé ifif
(Def. 6) Ifxeit, thenxis a hiperplane o¥.

Let us consideK, V. The functor hiperplan€¥) yielding a non empty set of hiperplanes\of
is defined by:

(Def. 7) x € hiperplanegV) iff xis a hiperplane o¥.
Let us consideK, V and letD be a non empty set of hiperplaneswafWe see that the element
of D is a hiperplane o¥'.

4. JOIN AND MEET OF FINITE SEQUENCES OF SUBMODULES

Let us consideK, V, L1. The functory L, yields an element of Sl) and is defined by:
(Def. 8) 3 Li=SubJoiV ®L;.

The functon L, yielding an element of Sy) is defined as follows:
(Def.9) NLi=SubMeeV ®L;.

Next we state three propositions:

(12E] Let G be a lattice. Then the join operation Gfis commutative and associative and the
meet operation of is commutative and associative.

(14@ SubJoitV is commutative and associative and Sub¥oiras a unity an@y = 1supJoir -

(15) SubMeeY¥ is commutative and associative and SubMekéas a unity an@y = 1supmeev -

5. SUM OF SUBSETS OF MODULE

Let us consideK, V, A3, A2. The functorA; + A, yields a subset df and is defined as follows:

(Def. 10) x € Ay + A iff there existay, a such thatb; € A; anday € A, andx=a; + ap.

1 The propositions (7)-(11) have been removed.
2 The proposition (13) has been removed.
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6. VECTOR OF SUBSET

Let us consideK, V, A. Let us assume thdt= 0. A vector ofV is called a vector oA if:
(Def. 11) Itis an element oA.

We now state three propositions:

(16) If Ay # 0 andA; C Ay, then for everyx such thaix is a vector ofA; holdsx is a vector of
A.

(17) axeaq+Wiff ag—ap e W.
(18) ay+W=ax+Wiff ag —ap € W.
Let us consideK, V, W. The functoV < W yields a set and is defined by:
(Def. 12) x eV <, Wi iff there existsa such thak = a+W.

Let us consideK, V, W. Observe tha¥/ <P W is non empty.
Let us consideK, V, W, a. The functora <¢ W yielding an element o¥ <p W is defined by:

(Def. 13) a<PW =a+W.
One can prove the following two propositions:
(19) For every elementof V <P W there exist& such thak = a «p W.
(20) a1 «PW=ap«PWiff ag—ar e W.

In the sequef;, S denote elements &f <P W.
Let us consideK, V, W, . The functor—S; yielding an element of < W is defined as
follows:

(Def. 14) IfS =a«<rW, then—S = (—a) P W.
Let us conside&,. The functorS, + S, yields an element of < W and is defined by:
(Def.15) IfS =a; «PWandS =ay <P W, thenS + S, = (a1 +a) «-PW.

Let us consideK, V, W. The functor COMPIW) yields a unary operation ovi < W and is
defined by:

(Def. 16) (COMPL(W))(S) = —S1.
The functor ADOW) yielding a binary operation ovf <p W is defined by:
(Def. 17) (ADD(W))(S1, &) =S+ S
Let us consideK, V, W. The functoV (W) yielding a strict loop structure is defined as follows:
(Def. 18) V(W) = (V <P W,ADD(W),0y <P W).

Let us consideK, V, W. Observe tha¥ (W) is non empty.
The following proposition is true

(21) a«<PW is an element of (W).

Let us consideK, V, W, a. The functora(W) yields an element 0¥ (W) and is defined as
follows:

(Def. 19) a(W)=a+-PW.

One can prove the following three propositions:



DOMAINS OF SUBMODULES JOIN AND MEET ... 5

(22) For every elementof V(W) there exists such thak = a(W).
(23) (W) =ax(W)iff ag —ap e W.
(24) a(W)+b(W) = (a+b)(W) and Qw) = Ov(W).

Let us consideK, V, W. One can check that(W) is Abelian, add-associative, right zeroed,
and right complementable.

In the sequeSis an element o¥ (W).

Let us consideK, V, W, r, S The functorr - Syields an element d¥ (W) and is defined as
follows:

(Def. 20) IfS=a(W), thenr-S=(r-a)(W).

Let us consideK, V, W. The functor LMULT(W) yields a function fronj: the carrier oK, the
carrier ofV (W) ] into the carrier o/ (W) and is defined as follows:

(Def. 21) (LMULT (W))(r,S)=r-S

7. QUOTIENT MODULES

Let us consideK, V, W. The functor\\,’—v yields a strict vector space structure oteand is defined
by:
(Def. 22) ¥ = (the carrier oV (W), the addition o/ (W), the zero of/ (W), LMULT (W)).

Let us consideK, V, W. One can check thz%g is non empty.
The following propositions are true:

(26f] a(w) is a vector of;.
(27) Every vector o% is an element o¥ (W).

Let us consideK, V, W, a. The functor; yielding a vector of% is defined by:
(Def. 23) & =a(W).
One can prove the following propositions:
(28) For every vectox of \‘,’—v there exists such thak = .
(29) X =2iff ag—apeW.
(30) &+ Q=2Pandr & ="ra
(31) % is astrict left module oveK.

Let us consideK, V, W. Observe tha% is vector space-like.
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