Domains of Submodules, Join and Meet of Finite Sequences of Submodules and Quotient Modules

Michał Muzalewski Warsaw University Białystok

Summary. Notions of domains of submodules, join and meet of finite sequences of submodules and quotient modules. A few basic theorems and schemes related to these notions are proved.

MML Identifier: LMOD_7.

WWW: http://mizar.org/JFM/Vol5/lmod_7.html

The articles [13], [5], [18], [3], [4], [2], [1], [12], [19], [11], [14], [6], [7], [17], [16], [15], [10], [8], and [9] provide the notation and terminology for this paper.

1. SCHEMES

In this article we present several logical schemes. The scheme ElementEq deals with a set \mathcal{A} and a unary predicate \mathcal{P} , and states that:

Let X_1 , X_2 be elements of \mathcal{A} . Suppose for every set x holds $x \in X_1$ iff $\mathcal{P}[x]$ and for every set x holds $x \in X_2$ iff $\mathcal{P}[x]$. Then $X_1 = X_2$

for all values of the parameters.

The scheme UnOpEq deals with a non empty set $\mathcal A$ and a unary functor $\mathcal F$ yielding a set, and states that:

Let f_1 , f_2 be unary operations on \mathcal{A} . Suppose for every element a of \mathcal{A} holds $f_1(a) = \mathcal{F}(a)$ and for every element a of \mathcal{A} holds $f_2(a) = \mathcal{F}(a)$. Then $f_1 = f_2$ for all values of the parameters.

The scheme TriOpEq deals with a non empty set $\mathcal A$ and a ternary functor $\mathcal F$ yielding a set, and states that:

```
Let f_1, f_2 be ternary operations on \mathcal{A}. Suppose for all elements a, b, c of \mathcal{A} holds f_1(a,b,c)=\mathcal{F}(a,b,c) and for all elements a, b, c of \mathcal{A} holds f_2(a,b,c)=\mathcal{F}(a,b,c). Then f_1=f_2
```

for all values of the parameters.

The scheme QuaOpEq deals with a non empty set $\mathcal A$ and a 4-ary functor $\mathcal F$ yielding a set, and states that:

```
Let f_1, f_2 be quadrary operations on \mathcal{A}. Suppose for all elements a, b, c, d of \mathcal{A} holds f_1(a,b,c,d) = \mathcal{F}(a,b,c,d) and for all elements a, b, c, d of \mathcal{A} holds f_2(a,b,c,d) = \mathcal{F}(a,b,c,d). Then f_1 = f_2
```

for all values of the parameters.

The scheme *Fraenkel1 Ex* deals with non empty sets \mathcal{A} , \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

There exists a subset *S* of \mathcal{B} such that $S = \{ \mathcal{F}(x); x \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[x] \}$ for all values of the parameters.

The scheme $Fr\ 0$ deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[\mathcal{B}]$

provided the parameters satisfy the following condition:

• $\mathcal{B} \in \{a; a \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[a]\}.$

The scheme $Fr\ I$ deals with a set \mathcal{A} , a non empty set \mathcal{B} , an element \mathcal{C} of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

 $C \in \mathcal{A} \text{ iff } \mathcal{P}[C]$

provided the following condition is satisfied:

• $\mathcal{A} = \{a; a \text{ ranges over elements of } \mathcal{B} : \mathcal{P}[a]\}.$

The scheme $Fr\ 2$ deals with a set \mathcal{A} , a non empty set \mathcal{B} , an element \mathcal{C} of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[\mathcal{C}]$

provided the parameters satisfy the following conditions:

- $C \in \mathcal{A}$, and
- $\mathcal{A} = \{a; a \text{ ranges over elements of } \mathcal{B} : \mathcal{P}[a] \}.$

The scheme $Fr\ 3$ deals with a set \mathcal{A} , a set \mathcal{B} , a non empty set \mathcal{C} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{A} \in \mathcal{B}$ iff there exists an element a of \mathcal{C} such that $\mathcal{A} = a$ and $\mathcal{P}[a]$ provided the parameters meet the following requirement:

• $\mathcal{B} = \{a; a \text{ ranges over elements of } \mathcal{C} : \mathcal{P}[a]\}.$

The scheme $Fr\ 4$ deals with non empty sets \mathcal{A} , \mathcal{B} , a set \mathcal{C} , an element \mathcal{D} of \mathcal{A} , a unary functor \mathcal{F} yielding a set, and two binary predicates \mathcal{P} , \mathcal{Q} , and states that:

 $\mathcal{D} \in \mathcal{F}(\mathcal{C})$ iff for every element b of \mathcal{B} such that $b \in \mathcal{C}$ holds $\mathcal{P}[\mathcal{D}, b]$ provided the following requirements are met:

- $\mathcal{F}(\mathcal{C}) = \{a; a \text{ ranges over elements of } \mathcal{A} : \mathcal{Q}[a, \mathcal{C}]\}, \text{ and }$
- $Q[\mathcal{D}, \mathcal{C}]$ iff for every element b of \mathcal{B} such that $b \in \mathcal{C}$ holds $\mathcal{P}[\mathcal{D}, b]$.

2. Auxiliary theorems on free-modules

For simplicity, we follow the rules: x is a set, K is a ring, r is a scalar of K, V is a left module over K, a, b, a_1 , a_2 are vectors of V, A, A_1 , A_2 are subsets of V, V is a linear combination of V, V is a subspace of V, and V is a finite sequence of elements of V.

The following propositions are true:

- (1) If *K* is non trivial and *A* is linearly independent, then $0_V \notin A$.
- (2) If $a \notin A$, then $l(a) = 0_K$.
- (3) If K is trivial, then for every l holds the support of $l = \emptyset$ and Lin(A) is trivial.
- (4) If V is non trivial, then for every A such that A is base holds $A \neq \emptyset$.
- (5) If $A_1 \cup A_2$ is linearly independent and A_1 misses A_2 , then $Lin(A_1) \cap Lin(A_2) = \mathbf{0}_V$.
- (6) If A is base and $A = A_1 \cup A_2$ and A_1 misses A_2 , then V is the direct sum of $Lin(A_1)$ and $Lin(A_2)$.

3. Domains of Submodules

Let us consider K, V. A non empty set is called a non empty set of submodules of V if:

(Def. 1) If $x \in it$, then x is a strict subspace of V.

Let us consider K, V. Then Sub(V) is a non empty set of submodules of V.

Let us consider K, V and let D be a non empty set of submodules of V. We see that the element of D is a strict subspace of V.

Let us consider K, V and let D be a non empty set of submodules of V. Observe that there exists an element of D which is strict.

Let us consider K, V. Let us assume that V is non trivial. A strict subspace of V is said to be a line of V if:

(Def. 2) There exists a such that $a \neq 0_V$ and it $= \prod^* a$.

Let us consider K, V. A non empty set is called a non empty set of lines of V if:

(Def. 3) If $x \in it$, then x is a line of V.

Let us consider K, V. The functor lines (V) yielding a non empty set of lines of V is defined as follows:

(Def. 4) $x \in \text{lines}(V)$ iff x is a line of V.

Let us consider K, V and let D be a non empty set of lines of V. We see that the element of D is a line of V.

Let us consider K, V. Let us assume that V is non trivial and V is free. A strict subspace of V is said to be a hiperplane of V if:

(Def. 5) There exists a such that $a \neq 0_V$ and V is the direct sum of $\prod^* a$ and it.

Let us consider K, V. A non empty set is called a non empty set of hiperplanes of V if:

(Def. 6) If $x \in it$, then x is a hiperplane of V.

Let us consider K, V. The functor hiperplanes (V) yielding a non empty set of hiperplanes of V is defined by:

(Def. 7) $x \in \text{hiperplanes}(V) \text{ iff } x \text{ is a hiperplane of } V.$

Let us consider K, V and let D be a non empty set of hiperplanes of V. We see that the element of D is a hiperplane of V.

4. Join and meet of finite sequences of submodules

Let us consider K, V, L_1 . The functor $\sum L_1$ yields an element of Sub(V) and is defined by:

(Def. 8) $\Sigma L_1 = \text{SubJoin } V \circledast L_1$.

The functor $\bigcap L_1$ yielding an element of Sub(V) is defined as follows:

(Def. 9) $\bigcap L_1 = \text{SubMeet} V \circledast L_1$.

Next we state three propositions:

- $(12)^{l}$ Let G be a lattice. Then the join operation of G is commutative and associative and the meet operation of G is commutative and associative.
- $(14)^2$ SubJoin V is commutative and associative and SubJoin V has a unity and $\mathbf{0}_V = \mathbf{1}_{\text{SubJoin }V}$.
- (15) SubMeet V is commutative and associative and SubMeet V has a unity and $\Omega_V = \mathbf{1}_{SubMeet V}$.

5. Sum of subsets of module

Let us consider K, V, A_1, A_2 . The functor $A_1 + A_2$ yields a subset of V and is defined as follows:

(Def. 10) $x \in A_1 + A_2$ iff there exist a_1 , a_2 such that $a_1 \in A_1$ and $a_2 \in A_2$ and $x = a_1 + a_2$.

¹ The propositions (7)–(11) have been removed.

² The proposition (13) has been removed.

6. VECTOR OF SUBSET

Let us consider K, V, A. Let us assume that $A \neq \emptyset$. A vector of V is called a vector of A if:

(Def. 11) It is an element of A.

We now state three propositions:

- (16) If $A_1 \neq \emptyset$ and $A_1 \subseteq A_2$, then for every x such that x is a vector of A_1 holds x is a vector of A_2 .
- (17) $a_2 \in a_1 + W \text{ iff } a_1 a_2 \in W.$
- (18) $a_1 + W = a_2 + W \text{ iff } a_1 a_2 \in W.$

Let us consider K, V, W. The functor $V \hookrightarrow W$ yields a set and is defined by:

(Def. 12) $x \in V \hookrightarrow W$ iff there exists a such that x = a + W.

Let us consider K, V, W. Observe that $V \hookrightarrow W$ is non empty. Let us consider K, V, W, a. The functor $a \hookrightarrow W$ yielding an element of $V \hookrightarrow W$ is defined by:

(Def. 13) $a \leftrightarrow W = a + W$.

One can prove the following two propositions:

- (19) For every element x of $V \hookrightarrow W$ there exists a such that $x = a \hookrightarrow W$.
- (20) $a_1 \leftrightarrow W = a_2 \leftrightarrow W \text{ iff } a_1 a_2 \in W.$

In the sequel S_1 , S_2 denote elements of $V \hookrightarrow W$.

Let us consider K, V, W, S_1 . The functor $-S_1$ yielding an element of $V \leftrightarrow W$ is defined as follows:

(Def. 14) If $S_1 = a \leftrightarrow W$, then $-S_1 = (-a) \leftrightarrow W$.

Let us consider S_2 . The functor $S_1 + S_2$ yields an element of $V \hookrightarrow W$ and is defined by:

(Def. 15) If $S_1 = a_1 \leftrightarrow W$ and $S_2 = a_2 \leftrightarrow W$, then $S_1 + S_2 = (a_1 + a_2) \leftrightarrow W$.

Let us consider K, V, W. The functor COMPL(W) yields a unary operation on $V \leftrightarrow W$ and is defined by:

(Def. 16) $(COMPL(W))(S_1) = -S_1$.

The functor ADD(W) yielding a binary operation on $V \leftarrow W$ is defined by:

(Def. 17) $(ADD(W))(S_1, S_2) = S_1 + S_2$.

Let us consider K, V, W. The functor V(W) yielding a strict loop structure is defined as follows:

(Def. 18) $V(W) = \langle V \leftrightarrow W, ADD(W), 0_V \leftrightarrow W \rangle$.

Let us consider K, V, W. Observe that V(W) is non empty.

The following proposition is true

(21) $a \hookrightarrow W$ is an element of V(W).

Let us consider K, V, W, a. The functor a(W) yields an element of V(W) and is defined as follows:

(Def. 19) $a(W) = a \leftrightarrow W$.

One can prove the following three propositions:

- (22) For every element x of V(W) there exists a such that x = a(W).
- (23) $a_1(W) = a_2(W)$ iff $a_1 a_2 \in W$.
- (24) a(W) + b(W) = (a+b)(W) and $0_{V(W)} = 0_V(W)$.

Let us consider K, V, W. One can check that V(W) is Abelian, add-associative, right zeroed, and right complementable.

In the sequel S is an element of V(W).

Let us consider K, V, W, r, S. The functor $r \cdot S$ yields an element of V(W) and is defined as follows:

(Def. 20) If
$$S = a(W)$$
, then $r \cdot S = (r \cdot a)(W)$.

Let us consider K, V, W. The functor LMULT(W) yields a function from [: the carrier of K, the carrier of V(W):] into the carrier of V(W) and is defined as follows:

(Def. 21)
$$(LMULT(W))(r, S) = r \cdot S$$
.

7. QUOTIENT MODULES

Let us consider K, V, W. The functor $\frac{V}{W}$ yields a strict vector space structure over K and is defined by:

(Def. 22) $\frac{V}{W} = \langle \text{the carrier of } V(W), \text{ the addition of } V(W), \text{ the zero of } V(W), \text{ LMULT}(W) \rangle.$

Let us consider K, V, W. One can check that $\frac{V}{W}$ is non empty. The following propositions are true:

- $(26)^3$ a(W) is a vector of $\frac{V}{W}$.
- (27) Every vector of $\frac{V}{W}$ is an element of V(W).

Let us consider K, V, W, a. The functor $\frac{a}{W}$ yielding a vector of $\frac{V}{W}$ is defined by:

(Def. 23)
$$\frac{a}{W} = a(W)$$
.

One can prove the following propositions:

- (28) For every vector x of $\frac{V}{W}$ there exists a such that $x = \frac{a}{W}$.
- (29) $\frac{a_1}{W} = \frac{a_2}{W} \text{ iff } a_1 a_2 \in W.$
- (30) $\frac{a}{W} + \frac{b}{W} = \frac{a+b}{W}$ and $r \cdot \frac{a}{W} = \frac{r \cdot a}{W}$.
- (31) $\frac{V}{W}$ is a strict left module over K.

Let us consider K, V, W. Observe that $\frac{V}{W}$ is vector space-like.

REFERENCES

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [2] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.

³ The proposition (25) has been removed.

- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [7] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_2.html.
- [8] Michał Muzalewski. Free modules. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/mod_3.html.
- [9] Michał Muzalewski. Submodules. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lmod_6.html.
- [10] Michał Muzalewski and Wojciech Skaba. Linear independence in left module over domain. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/lmod_5.html.
- [11] Michał Muzalewski and Wojciech Skaba. Three-argument operations and four-argument operations. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/multop_1.html.
- [12] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setwiseo.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/
- [14] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlvect 1.html.
- [15] Wojciech A. Trybulec. Linear combinations in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp 6.html.
- [16] Wojciech A. Trybulec. Operations on subspaces in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/vectsp_5.html.
- [17] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_4.html.
- [18] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [19] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/lattices.html.

Received March 29, 1993

Published January 2, 2004