The Limit of a Composition of Real Functions

Jarosław Kotowicz Warsaw University Białystok

Summary. The theorem on the proper and improper limit of a composition of real functions at a point, at infinity and one-side limits at a point are presented.

MML Identifier: LIMFUNC4.

WWW: http://mizar.org/JFM/Vol2/limfunc4.html

The articles [9], [10], [2], [3], [8], [11], [1], [7], [5], [6], and [4] provide the notation and terminology for this paper.

We adopt the following convention: r, r_1 , r_2 , g, g_1 , g_2 , g_3 denote real numbers and f_1 , f_2 denote partial functions from \mathbb{R} to \mathbb{R} .

We now state a number of propositions:

- (1) Let s be a sequence of real numbers and X be a set. Suppose $\operatorname{rng} s \subseteq \operatorname{dom}(f_2 \cdot f_1) \cap X$. Then $\operatorname{rng} s \subseteq \operatorname{dom}(f_2 \cdot f_1)$ and $\operatorname{rng} s \subseteq \operatorname{dom} f_1$ and $\operatorname{rng} s \subseteq \operatorname{dom} f_1 \cap X$ and $\operatorname{rng}(f_1 \cdot s) \subseteq \operatorname{dom} f_2$.
- (2) Let s be a sequence of real numbers and X be a set. If $\operatorname{rng} s \subseteq \operatorname{dom}(f_2 \cdot f_1) \setminus X$, then $\operatorname{rng} s \subseteq \operatorname{dom}(f_2 \cdot f_1)$ and $\operatorname{rng} s \subseteq \operatorname{dom} f_1$ and $\operatorname{rng} s \subseteq \operatorname{dom} f_1 \setminus X$ and $\operatorname{rng}(f_1 \cdot s) \subseteq \operatorname{dom} f_2$.
- (3) Suppose that
- (i) f_1 is divergent in $+\infty$ to $+\infty$,
- (ii) f_2 is divergent in $+\infty$ to $+\infty$, and
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$.

Then $f_2 \cdot f_1$ is divergent in $+\infty$ to $+\infty$.

- (4) Suppose that
- (i) f_1 is divergent in $+\infty$ to $+\infty$,
- (ii) f_2 is divergent in $+\infty$ to $-\infty$, and
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$.

Then $f_2 \cdot f_1$ is divergent in $+\infty$ to $-\infty$.

- (5) Suppose that
- (i) f_1 is divergent in $+\infty$ to $-\infty$,
- (ii) f_2 is divergent in $-\infty$ to $+\infty$, and
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$.

Then $f_2 \cdot f_1$ is divergent in $+\infty$ to $+\infty$.

- (6) Suppose that
- (i) f_1 is divergent in $+\infty$ to $-\infty$,
- (ii) f_2 is divergent in $-\infty$ to $-\infty$, and
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$.

Then $f_2 \cdot f_1$ is divergent in $+\infty$ to $-\infty$.

- (7) Suppose that
- (i) f_1 is divergent in $-\infty$ to $+\infty$,
- (ii) f_2 is divergent in $+\infty$ to $+\infty$, and
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is divergent in $-\infty$ to $+\infty$.
- (8) Suppose that
- (i) f_1 is divergent in $-\infty$ to $+\infty$,
- (ii) f_2 is divergent in $+\infty$ to $-\infty$, and
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is divergent in $-\infty$ to $-\infty$.
- (9) Suppose that
- (i) f_1 is divergent in $-\infty$ to $-\infty$,
- (ii) f_2 is divergent in $-\infty$ to $+\infty$, and
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is divergent in $-\infty$ to $+\infty$.
- (10) Suppose that
 - (i) f_1 is divergent in $-\infty$ to $-\infty$,
- (ii) f_2 is divergent in $-\infty$ to $-\infty$, and
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is divergent in $-\infty$ to $-\infty$.
- (11) Suppose that
 - (i) f_1 is left divergent to $+\infty$ in x_0 ,
- (ii) f_2 is divergent in $+\infty$ to $+\infty$, and
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is left divergent to $+\infty$ in x_0 .
- (12) Suppose that
 - (i) f_1 is left divergent to $+\infty$ in x_0 ,
- (ii) f_2 is divergent in $+\infty$ to $-\infty$, and
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is left divergent to $-\infty$ in x_0 .
- (13) Suppose that
 - (i) f_1 is left divergent to $-\infty$ in x_0 ,
- (ii) f_2 is divergent in $-\infty$ to $+\infty$, and
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is left divergent to $+\infty$ in x_0 .

- (14) Suppose that
 - (i) f_1 is left divergent to $-\infty$ in x_0 ,
- (ii) f_2 is divergent in $-\infty$ to $-\infty$, and
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is left divergent to $-\infty$ in x_0 .
- (15) Suppose that
 - (i) f_1 is right divergent to $+\infty$ in x_0 ,
- (ii) f_2 is divergent in $+\infty$ to $+\infty$, and
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is right divergent to $+\infty$ in x_0 .
- (16) Suppose that
 - (i) f_1 is right divergent to $+\infty$ in x_0 ,
- (ii) f_2 is divergent in $+\infty$ to $-\infty$, and
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is right divergent to $-\infty$ in x_0 .
- (17) Suppose that
 - (i) f_1 is right divergent to $-\infty$ in x_0 ,
- (ii) f_2 is divergent in $-\infty$ to $+\infty$, and
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is right divergent to $+\infty$ in x_0 .
- (18) Suppose that
 - (i) f_1 is right divergent to $-\infty$ in x_0 ,
- (ii) f_2 is divergent in $-\infty$ to $-\infty$, and
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is right divergent to $-\infty$ in x_0 .
- (19) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is left divergent to $+\infty$ in $\lim_{x_0^-} f_1$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$,
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $f_1(r) < \lim_{x_0^-} f_1.$

Then $f_2 \cdot f_1$ is left divergent to $+\infty$ in x_0 .

- (20) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is left divergent to $-\infty$ in $\lim_{x_0^-} f_1$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $f_1(r) < \lim_{x_0^-} f_1.$

Then $f_2 \cdot f_1$ is left divergent to $-\infty$ in x_0 .

- (21) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is right divergent to $+\infty$ in $\lim_{x_0^-} f_1$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $\lim_{x_0^-} f_1 < f_1(r).$

Then $f_2 \cdot f_1$ is left divergent to $+\infty$ in x_0 .

- (22) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is right divergent to $-\infty$ in $\lim_{x_0^-} f_1$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $\lim_{x_0^-} f_1 < f_1(r)$.

Then $f_2 \cdot f_1$ is left divergent to $-\infty$ in x_0 .

- (23) Suppose that
 - (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is right divergent to $+\infty$ in $\lim_{x_0^+} f_1$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $\lim_{x_0^+} f_1 < f_1(r)$.

Then $f_2 \cdot f_1$ is right divergent to $+\infty$ in x_0 .

- (24) Suppose that
 - (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is right divergent to $-\infty$ in $\lim_{x_0^+} f_1$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $\lim_{x_0^+} f_1 < f_1(r)$.

Then $f_2 \cdot f_1$ is right divergent to $-\infty$ in x_0 .

- (25) Suppose that
 - (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is left divergent to $+\infty$ in $\lim_{x_0^+} f_1$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $f_1(r) < \lim_{x_0^+} f_1$.

Then $f_2 \cdot f_1$ is right divergent to $+\infty$ in x_0 .

- (26) Suppose that
 - (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is left divergent to $-\infty$ in $\lim_{x_0^+} f_1$,

- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $f_1(r) < \lim_{x_0^+} f_1.$

Then $f_2 \cdot f_1$ is right divergent to $-\infty$ in x_0 .

- (27) Suppose that
 - (i) f_1 is convergent in $+\infty$,
- (ii) f_2 is left divergent to $+\infty$ in $\lim_{+\infty} f_1$,
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]r, +\infty[$ holds $f_1(g) < \lim_{+\infty} f_1$. Then $f_2 \cdot f_1$ is divergent in $+\infty$ to $+\infty$.
- (28) Suppose that
 - (i) f_1 is convergent in $+\infty$,
- (ii) f_2 is left divergent to $-\infty$ in $\lim_{+\infty} f_1$,
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]r, +\infty[$ holds $f_1(g) < \lim_{+\infty} f_1$. Then $f_2 \cdot f_1$ is divergent in $+\infty$ to $-\infty$.
- (29) Suppose that
 - (i) f_1 is convergent in $+\infty$,
- (ii) f_2 is right divergent to $+\infty$ in $\lim_{+\infty} f_1$,
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]r, +\infty[$ holds $\lim_{+\infty} f_1 < f_1(g)$. Then $f_2 \cdot f_1$ is divergent in $+\infty$ to $+\infty$.
- (30) Suppose that
 - (i) f_1 is convergent in $+\infty$,
- (ii) f_2 is right divergent to $-\infty$ in $\lim_{+\infty} f_1$,
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]r, +\infty[$ holds $\lim_{+\infty} f_1 < f_1(g)$. Then $f_2 \cdot f_1$ is divergent in $+\infty$ to $-\infty$.
- (31) Suppose that
 - (i) f_1 is convergent in $-\infty$,
- (ii) f_2 is left divergent to $+\infty$ in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[\text{ holds } f_1(g) < \lim_{-\infty} f_1.$ Then $f_2 \cdot f_1$ is divergent in $-\infty$ to $+\infty$.
- (32) Suppose that
 - (i) f_1 is convergent in $-\infty$,
- (ii) f_2 is left divergent to $-\infty$ in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[\text{ holds } f_1(g) < \lim_{-\infty} f_1.$ Then $f_2 \cdot f_1$ is divergent in $-\infty$ to $-\infty$.

- (33) Suppose that
 - (i) f_1 is convergent in $-\infty$,
- (ii) f_2 is right divergent to $+\infty$ in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[\text{ holds } \lim_{-\infty} f_1 < f_1(g)$. Then $f_2 \cdot f_1$ is divergent in $-\infty$ to $+\infty$.
- (34) Suppose that
 - (i) f_1 is convergent in $-\infty$,
- (ii) f_2 is right divergent to $-\infty$ in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[$ holds $\lim_{-\infty} f_1 < f_1(g)$. Then $f_2 \cdot f_1$ is divergent in $-\infty$ to $-\infty$.
- (35) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
- (ii) f_2 is divergent in $+\infty$ to $+\infty$, and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$.

Then $f_2 \cdot f_1$ is divergent to $+\infty$ in x_0 .

- (36) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
- (ii) f_2 is divergent in $+\infty$ to $-\infty$, and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$.

Then $f_2 \cdot f_1$ is divergent to $-\infty$ in x_0 .

- (37) Suppose that
 - (i) f_1 is divergent to $-\infty$ in x_0 ,
- (ii) f_2 is divergent in $-\infty$ to $+\infty$, and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$.

Then $f_2 \cdot f_1$ is divergent to $+\infty$ in x_0 .

- (38) Suppose that
 - (i) f_1 is divergent to $-\infty$ in x_0 ,
- (ii) f_2 is divergent in $-\infty$ to $-\infty$, and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$.

Then $f_2 \cdot f_1$ is divergent to $-\infty$ in x_0 .

- (39) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is divergent to $+\infty$ in $\lim_{x_0} f_1$,
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) \neq \lim_{x_0} f_1$.

Then $f_2 \cdot f_1$ is divergent to $+\infty$ in x_0 .

- (40) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is divergent to $-\infty$ in $\lim_{x_0} f_1$,
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) \neq \lim_{x_0} f_1$.

Then $f_2 \cdot f_1$ is divergent to $-\infty$ in x_0 .

- (41) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is right divergent to $+\infty$ in $\lim_{x_0} f_1$,
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) > \lim_{x_0} f_1$.

Then $f_2 \cdot f_1$ is divergent to $+\infty$ in x_0 .

- (42) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is right divergent to $-\infty$ in $\lim_{x_0} f_1$,
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) > \lim_{x_0} f_1$.

Then $f_2 \cdot f_1$ is divergent to $-\infty$ in x_0 .

- (43) Suppose that
 - (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is divergent to $+\infty$ in $\lim_{x_0^+} f_1$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $f_1(r) \neq \lim_{x_0^+} f_1$.

Then $f_2 \cdot f_1$ is right divergent to $+\infty$ in x_0 .

- (44) Suppose that
 - (i) f_1 is right convergent in x_0 ,
 - (ii) f_2 is divergent to $-\infty$ in $\lim_{x_0^+} f_1$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$,
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $f_1(r) \neq \lim_{x_0^+} f_1$.

Then $f_2 \cdot f_1$ is right divergent to $-\infty$ in x_0 .

- (45) Suppose that
 - (i) f_1 is convergent in $+\infty$,
- (ii) f_2 is divergent to $+\infty$ in $\lim_{+\infty} f_1$,

- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]r, +\infty[$ holds $f_1(g) \neq \lim_{+\infty} f_1$. Then $f_2 \cdot f_1$ is divergent in $+\infty$ to $+\infty$.
- (46) Suppose that
 - (i) f_1 is convergent in $+\infty$,
- (ii) f_2 is divergent to $-\infty$ in $\lim_{+\infty} f_1$,
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]r, +\infty[$ holds $f_1(g) \neq \lim_{+\infty} f_1$. Then $f_2 \cdot f_1$ is divergent in $+\infty$ to $-\infty$.
- (47) Suppose that
 - (i) f_1 is convergent in $-\infty$,
- (ii) f_2 is divergent to $+\infty$ in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that g < r and $g \in dom(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[\text{ holds } f_1(g) \neq \lim_{-\infty} f_1.$ Then $f_2 \cdot f_1$ is divergent in $-\infty$ to $+\infty$.
- (48) Suppose that
 - (i) f_1 is convergent in $-\infty$,
- (ii) f_2 is divergent to $-\infty$ in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[\text{ holds } f_1(g) \neq \lim_{-\infty} f_1.$ Then $f_2 \cdot f_1$ is divergent in $-\infty$ to $-\infty$.
- (49) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is left divergent to $+\infty$ in $\lim_{x_0} f_1$,
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) < \lim_{x_0} f_1$.

Then $f_2 \cdot f_1$ is divergent to $+\infty$ in x_0 .

- (50) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is left divergent to $-\infty$ in $\lim_{x_0} f_1$,
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) < \lim_{x_0} f_1$.

Then $f_2 \cdot f_1$ is divergent to $-\infty$ in x_0 .

- (51) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is divergent to $+\infty$ in $\lim_{x_0^-} f_1$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, and

(iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 - g, x_0[$ holds $f_1(r) \neq \lim_{x_0^-} f_1.$

Then $f_2 \cdot f_1$ is left divergent to $+\infty$ in x_0 .

- (52) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is divergent to $-\infty$ in $\lim_{x_0^-} f_1$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $f_1(r) \neq \lim_{x_0^-} f_1.$

Then $f_2 \cdot f_1$ is left divergent to $-\infty$ in x_0 .

- (53) Suppose that
 - (i) f_1 is divergent in $+\infty$ to $+\infty$,
- (ii) f_2 is convergent in $+\infty$, and
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is convergent in $+\infty$ and $\lim_{+\infty} (f_2 \cdot f_1) = \lim_{+\infty} f_2$.
- (54) Suppose that
 - (i) f_1 is divergent in $+\infty$ to $-\infty$,
- (ii) f_2 is convergent in $-\infty$, and
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is convergent in $+\infty$ and $\lim_{m \to \infty} (f_2 \cdot f_1) = \lim_{m \to \infty} f_2$.
- (55) Suppose that
 - (i) f_1 is divergent in $-\infty$ to $+\infty$,
- (ii) f_2 is convergent in $+\infty$, and
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is convergent in $-\infty$ and $\lim_{-\infty} (f_2 \cdot f_1) = \lim_{+\infty} f_2$.
- (56) Suppose that
 - (i) f_1 is divergent in $-\infty$ to $-\infty$,
- (ii) f_2 is convergent in $-\infty$, and
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is convergent in $-\infty$ and $\lim_{-\infty} (f_2 \cdot f_1) = \lim_{-\infty} f_2$.
- (57) Suppose that
 - (i) f_1 is left divergent to $+\infty$ in x_0 ,
- (ii) f_2 is convergent in $+\infty$, and
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is left convergent in x_0 and $\lim_{x_0^-} (f_2 \cdot f_1) = \lim_{t \to \infty} f_2$.
- (58) Suppose that
 - (i) f_1 is left divergent to $-\infty$ in x_0 ,
- (ii) f_2 is convergent in $-\infty$, and
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is left convergent in x_0 and $\lim_{x_0^-} (f_2 \cdot f_1) = \lim_{-\infty} f_2$.

- (59) Suppose that
 - (i) f_1 is right divergent to $+\infty$ in x_0 ,
- (ii) f_2 is convergent in $+\infty$, and
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is right convergent in x_0 and $\lim_{x_0^+} (f_2 \cdot f_1) = \lim_{x_0^+} f_2$.
- (60) Suppose that
 - (i) f_1 is right divergent to $-\infty$ in x_0 ,
- (ii) f_2 is convergent in $-\infty$, and
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$. Then $f_2 \cdot f_1$ is right convergent in x_0 and $\lim_{x_0^+} (f_2 \cdot f_1) = \lim_{-\infty} f_2$.
- (61) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is left convergent in $\lim_{x_0^-} f_1$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $f_1(r) < \lim_{x_0^-} f_1.$

Then $f_2 \cdot f_1$ is left convergent in x_0 and $\lim_{x_0^-} (f_2 \cdot f_1) = \lim_{x_0^-} f_1^- f_2$.

- (62) Suppose that
 - (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is right convergent in $\lim_{x_0^+} f_1$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $\lim_{x_0^+} f_1 < f_1(r)$.

Then $f_2 \cdot f_1$ is right convergent in x_0 and $\lim_{x_0^+} (f_2 \cdot f_1) = \lim_{x_0^+} f_1^+ f_2$.

- (63) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is right convergent in $\lim_{x_0^-} f_1$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $\lim_{x_0^-} f_1 < f_1(r)$.

Then $f_2 \cdot f_1$ is left convergent in x_0 and $\lim_{x_0^-} (f_2 \cdot f_1) = \lim_{x_0^-} f_1^+ f_2$.

- (64) Suppose that
 - (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is left convergent in $\lim_{x_0^+} f_1$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $f_1(r) < \lim_{x_0^+} f_1$.

Then $f_2 \cdot f_1$ is right convergent in x_0 and $\lim_{x_0^+} (f_2 \cdot f_1) = \lim_{\lim_{x_0^+} f_1^-} f_2$.

- (65) Suppose that
 - (i) f_1 is convergent in $+\infty$,
- (ii) f_2 is left convergent in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]r, +\infty[\text{ holds } f_1(g) < \lim_{+\infty} f_1.$ Then $f_2 \cdot f_1$ is convergent in $+\infty$ and $\lim_{+\infty} (f_2 \cdot f_1) = \lim_{\lim_{+\infty} f_1 - f_2} f_2.$
- (66) Suppose that
 - (i) f_1 is convergent in $+\infty$,
- (ii) f_2 is right convergent in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]r, +\infty[$ holds $\lim_{+\infty} f_1 < f_1(g)$. Then $f_2 \cdot f_1$ is convergent in $+\infty$ and $\lim_{+\infty} (f_2 \cdot f_1) = \lim_{\lim_{+\infty} f_1 + f_2} f_2$.
- (67) Suppose that
 - (i) f_1 is convergent in $-\infty$,
- (ii) f_2 is left convergent in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[\text{ holds } f_1(g) < \lim_{-\infty} f_1.$ Then $f_2 \cdot f_1$ is convergent in $-\infty$ and $\lim_{-\infty} (f_2 \cdot f_1) = \lim_{\lim_{-\infty} f_1 - f_2} f_2.$
- (68) Suppose that
 - (i) f_1 is convergent in $-\infty$,
- (ii) f_2 is right convergent in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[\text{ holds } \lim_{-\infty} f_1 < f_1(g).$ Then $f_2 \cdot f_1$ is convergent in $-\infty$ and $\lim_{-\infty} (f_2 \cdot f_1) = \lim_{\lim_{-\infty} f_1 + f_2}.$
- (69) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
- (ii) f_2 is convergent in $+\infty$, and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$.

Then $f_2 \cdot f_1$ is convergent in x_0 and $\lim_{x_0} (f_2 \cdot f_1) = \lim_{x_0} f_2$.

- (70) Suppose that
 - (i) f_1 is divergent to $-\infty$ in x_0 ,
- (ii) f_2 is convergent in $-\infty$, and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$.

Then $f_2 \cdot f_1$ is convergent in x_0 and $\lim_{x_0} (f_2 \cdot f_1) = \lim_{-\infty} f_2$.

- (71) Suppose that
 - (i) f_1 is convergent in $+\infty$,
- (ii) f_2 is convergent in $\lim_{+\infty} f_1$,
- (iii) for every r there exists g such that r < g and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]r, +\infty[\text{ holds } f_1(g) \neq \lim_{+\infty} f_1.$ Then $f_2 \cdot f_1$ is convergent in $+\infty$ and $\lim_{+\infty} (f_2 \cdot f_1) = \lim_{\lim_{+\infty} f_1} f_2.$

- (72) Suppose that
 - (i) f_1 is convergent in $-\infty$,
- (ii) f_2 is convergent in $\lim_{\infty} f_1$,
- (iii) for every r there exists g such that g < r and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists r such that for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[\text{ holds } f_1(g) \neq \lim_{-\infty} f_1.$ Then $f_2 \cdot f_1$ is convergent in $-\infty$ and $\lim_{-\infty} (f_2 \cdot f_1) = \lim_{\lim_{-\infty} f_1} f_2.$
- (73) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is left convergent in $\lim_{x_0} f_1$,
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) < \lim_{x_0} f_1$.

Then $f_2 \cdot f_1$ is convergent in x_0 and $\lim_{x_0} (f_2 \cdot f_1) = \lim_{\lim_{x_0} f_1 - f_2} f_2$.

- (74) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is convergent in $\lim_{x_0^-} f_1$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0 g, x_0[$ holds $f_1(r) \neq \lim_{x_0^-} f_1$.

Then $f_2 \cdot f_1$ is left convergent in x_0 and $\lim_{x_0^-} (f_2 \cdot f_1) = \lim_{x_0^-} f_1 f_2$.

- (75) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is right convergent in $\lim_{x_0} f_1$,
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 g, x_0[\cup]x_0, x_0 + g[)$ holds $\lim_{x_0} f_1 < f_1(r)$.

Then $f_2 \cdot f_1$ is convergent in x_0 and $\lim_{x_0} (f_2 \cdot f_1) = \lim_{\lim_{x_0} f_1^+} f_2$.

- (76) Suppose that
 - (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is convergent in $\lim_{x_0^+} f_1$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom}(f_2 \cdot f_1)$, and
- (iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap]x_0, x_0 + g[$ holds $f_1(r) \neq \lim_{x_0^+} f_1$.

Then $f_2 \cdot f_1$ is right convergent in x_0 and $\lim_{x_0^+} (f_2 \cdot f_1) = \lim_{x_0^+} f_1 f_2$.

- (77) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is convergent in $\lim_{x_0} f_1$,
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_2 \cdot f_1)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_2 \cdot f_1)$, and

(iv) there exists g such that 0 < g and for every r such that $r \in \text{dom } f_1 \cap (]x_0 - g, x_0[\cup]x_0, x_0 + g[)$ holds $f_1(r) \neq \lim_{x_0} f_1$.

Then $f_2 \cdot f_1$ is convergent in x_0 and $\lim_{x_0} (f_2 \cdot f_1) = \lim_{\lim_{x_0} f_1} f_2$.

REFERENCES

- [1] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/partfunl.html.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [3] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [4] Jarosław Kotowicz. The limit of a real function at a point. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/limfunc3.html.
- [5] Jarosław Kotowicz. The limit of a real function at infinity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/limfuncl.html.
- [6] Jarosław Kotowicz. The one-side limits of a real function at a point. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/limfunc2.html.
- [7] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_2.html.
- [8] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [11] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received September 5, 1990

Published January 2, 2004