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1. INCLUSION OFFUZZY SETS

In this paperX, Y are non empty sets.
Let X be a non empty set. Observe that every membership function ofX is real-yielding.
Let f , g be real-yielding functions. The predicatef v g is defined by:

(Def. 1) domf ⊆ domg and for every setx such thatx∈ dom f holds f (x)≤ g(x).

Let X be a non empty set and letf , g be membership functions ofX. Let us observe thatf v g
if and only if:

(Def. 2) For every elementx of X holds f (x)≤ g(x).

We introducef ⊆ g as a synonym off v g.
Let X, Y be non empty sets and letf , g be membership functions ofX, Y. Let us observe that

f v g if and only if:

(Def. 3) For every elementx of X and for every elementy of Y holds f (〈〈x, y〉〉)≤ g(〈〈x, y〉〉).

Next we state several propositions:

(1) For all membership functionsR, Sof X such that for every elementx of X holdsR(x) = S(x)
holdsR= S.

(2) Let R, Sbe membership functions ofX, Y. Suppose that for every elementx of X and for
every elementy of Y holdsR(〈〈x, y〉〉) = S(〈〈x, y〉〉). ThenR= S.

(3) For all membership functionsR, Sof X holdsR= S iff R⊆ SandS⊆ R.

(4) For every membership functionRof X holdsR⊆ R.

(5) For all membership functionsR, S, T of X such thatR⊆ SandS⊆ T holdsR⊆ T.

(6) Let X, Y, Z be non empty sets,R, Sbe membership functions ofX, Y, andT, U be mem-
bership functions ofY, Z. If R⊆ SandT ⊆U, thenR T⊆ S U.
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Let X be a non empty set and letf , g be membership functions ofX. Let us notice that the
functor min( f ,g) is commutative. Let us observe that the functor max( f ,g) is commutative.

We now state two propositions:

(7) For all membership functionsf , g of X holds min( f ,g)⊆ f .

(8) For all membership functionsf , g of X holds f ⊆max( f ,g).

2. PROPERTIES OFFUZZY RELATIONS

Let X be a non empty set and letR be a membership function ofX, X. We say thatR is reflexive if
and only if:

(Def. 4) Imf(X,X)⊆ R.

Let X be a non empty set and letR be a membership function ofX, X. Let us observe thatR is
reflexive if and only if:

(Def. 5) For every elementx of X holdsR(〈〈x, x〉〉) = 1.

Let X be a non empty set and letRbe a membership function ofX, X. We say thatR is symmetric
if and only if:

(Def. 6) converseR= R.

Let X be a non empty set and letR be a membership function ofX, X. Let us observe thatR is
symmetric if and only if:

(Def. 7) For all elementsx, y of X holdsR(〈〈x, y〉〉) = R(〈〈y, x〉〉).

Let X be a non empty set and letRbe a membership function ofX, X. We say thatR is transitive
if and only if:

(Def. 8) R R⊆ R.

Let X be a non empty set and letR be a membership function ofX, X. Let us observe thatR is
transitive if and only if:

(Def. 9) For all elementsx, y, z of X holdsR(〈〈x, y〉〉)uR(〈〈y, z〉〉)� R(〈〈x, z〉〉).

Let X be a non empty set and letR be a membership function ofX, X. We say thatR is
antisymmetric if and only if:

(Def. 10) For all elementsx, y of X such thatR(〈〈x, y〉〉) 6= 0 andR(〈〈y, x〉〉) 6= 0 holdsx = y.

Let X be a non empty set and letR be a membership function ofX, X. Let us observe thatR is
antisymmetric if and only if:

(Def. 11) For all elementsx, y of X such thatR(〈〈x, y〉〉) 6= 0 andx 6= y holdsR(〈〈y, x〉〉) = 0.

Let us considerX. One can check that Imf(X,X) is symmetric, transitive, reflexive, and anti-
symmetric.

Let us considerX. Observe that there exists a membership function ofX, X which is reflexive,
transitive, symmetric, and antisymmetric.

We now state two propositions:

(9) For all membership functionsR, S of X, X such thatR is symmetric andS is symmetric
holds conversemin(R,S) = min(R,S).

(10) For all membership functionsR, S of X, X such thatR is symmetric andS is symmetric
holds conversemax(R,S) = max(R,S).
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