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Summary. In the article the representation theorem for finite distributive lattice as
rings of sets is presented. Auxiliary concepts are introduced. Namely, the concept of the
height of an element, the maximal element in a chain, immediate predecessor of an element
and ring of sets. Besides the scheme of induction in finite lattice is proved.
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The articles([11],[18],[[15],[116],[16],[[7], 118],[2],[14], [10],[[18],[[0], [14].[[5], 1], [[1F],[12], and
[3] provide the notation and terminology for this paper.

1. INDUCTION IN A FINITE LATTICE

Let L be a 1-sorted structure and ketB be subsets df. Let us observe that C B if and only if:
(Def. 1) For every elementof L such thaix € A holdsx € B.

LetL be a lattice. Observe that there exists a chaib which is non empty.
LetL be a lattice and let, y be elements of. Let us assume that<y. A non empty chain of
L is called ax-chain ofy if:

(Def. 2) xeitandy € it and for every elemerof L such that € it holdsx < zandz<y.

We now state the proposition

(1) For every latticd and for all elements, y of L such thai <y holds{x,y} is ax-chain of
y.

LetL be afinite lattice and letbe an element df. The functor height yields a natural number
and is defined by:

(Def. 3) There exists d-chainA of x such that height = cardA and for everyl, -chainA of x
holds cardh < heightx.

One can prove the following propositions:

(2) For every finite latticd. and for all elements, b of L such thata < b holds heigh& <
heightb.

(3) LetL be a finite latticeC be a chain oL, andx, y be elements of. If x e C andy € C,
thenx < y iff heightx < heighty.
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(4) LetL be afinite latticeC be a chain ot., andx, y be elements of. If x € C andy € C,
thenx =y iff heightx = heighty.

(5) LetL be a finite latticeC be a chain ot, andx, y be elements of. If x € C andy € C,
thenx <y iff heightx < heighty.

(6) For every finite latticd. and for every elementof L holds heighk =1 iff x= 1.

(7) For every non empty finite lattideand for every elementof L holds heighk > 1.

The scheméattind deals with a finite lattice? and a unary predicat®, and states that:
For every element of 4 holds?|x]
provided the parameters meet the following condition:
e For every elememt of 4 such that for every elemebtof 4 such that < x holds
P[b] holdsP[x].

2. JOIN IRREDUCIBLE ELEMENTS IN A FINITE DISTRIBUTIVE LATTICE

Let us observe that there exists a lattice which is distributive and finite.
LetL be a lattice and let, y be elements of. The predicat& <1 y is defined as follows:

(Def. 4) x<yanditis not true that there exists an elemeot L such thak < zandz < y.

The following proposition is true

(8) LetL be afinite lattice an& be a non empty subset bf Then there exists an element
of L such thaix € X and for every elementof L such thaly € X holdsx £ y.

Let L be a finite lattice and leA be a non empty chain df. The functor maX yielding an
element ofL is defined as follows:

(Def. 5) For every elementof L such thai € A holdsx < maxA and maA € A.

We now state the proposition

(9) For every finite latticd. and for every element of L such thaty # L there exists an
elementx of L such thak <1 y.

LetL be a lattice. The functor Join-IRRyielding a subset df is defined as follows:

(Def. 6) Join-IRRL = {a;aranges over elementsbf a# L A Apc:element of. (@=DbLIC = a=
bva=c)}.

Next we state three propositions:
(10) LetL be alattice ana be an element df. Thenx € Join-IRRL if and only if the following
conditions are satisfied:
(i) x#1.,and
(i) for all elementsh, c of L such thaix =blLicholdsx=borx=c.
(11) LetL be afinite distributive lattice arxibe an element df. Suppose € Join-IRRL. Then

there exists an elementof L such thatz < x and for every element of L such thaty < x
holdsy < z

(12) For every distributive finite latticé and for every elemenk of L holds sug/xn
Join-IRRL) = x.
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3. REPRESENTATIONTHEOREM

Let P be a relational structure. The functor LOWEBRields a non empty set and is defined by:

(Def. 7) LOWERP = {X; X ranges over subsets Bf X is lower}.

One can prove the following two propositions:

(13) Let L be a distributive finite lattice. Then there exists a mapfrom L into

(LOWER sulfJoin-IRRL), C) such that is isomorphic and for every elemeatof L holds
r(a) = lanJoin-IRRL.

(14) For every distributive finite lattice holdsL and(LOWER sulfJoin-IRRL), C) are isomor-

phic.

Ring of sets is defined by:

(Def. 8) Itincludes lattice of it.

Let us note that there exists a ring of sets which is non empty.
Let X be a non empty ring of sets. Observe thé&tC) is distributive and has l.u.b.'s and g.l.b.'s.
We now state two propositions:

(15) For every finite latticé holds LOWER subJoin-IRRL) is a ring of sets.

(16) LetL be afinite lattice. Theh is distributive if and only if there exists a non empty ring
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of setsX such thal. and(X, C) are isomorphic.
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