Bounded Domains and Unbounded Domains

Yatsuka Nakamura Shinshu University Nagano Andrzej Trybulec University of Białystok Czesław Byliński University of Białystok

Summary. First, notions of inside components and outside components are introduced for any subset of *n*-dimensional Euclid space. Next, notions of the bounded domain and the unbounded domain are defined using the above components. If the dimension is larger than 1, and if a subset is bounded, a unbounded domain of the subset coincides with an outside component (which is unique) of the subset. For a sphere in *n*-dimensional space, the similar fact is true for a bounded domain. In 2 dimensional space, any rectangle also has such property. We discussed relations between the Jordan property and the concept of boundary, which are necessary to find points in domains near a curve. In the last part, we gave the sufficient criterion for belonging to the left component of some clockwise oriented finite sequences.

MML Identifier: JORDAN2C.

WWW: http://mizar.org/JFM/Vol11/jordan2c.html

The articles [38], [9], [45], [32], [46], [7], [8], [3], [40], [18], [2], [1], [34], [47], [13], [20], [6], [31], [33], [17], [29], [36], [15], [4], [10], [44], [41], [35], [5], [21], [30], [37], [24], [11], [14], [26], [12], [43], [42], [16], [19], [22], [27], [23], [28], [39], and [25] provide the notation and terminology for this paper.

1. DEFINITIONS OF BOUNDED DOMAIN AND UNBOUNDED DOMAIN

We use the following convention: m, n are natural numbers, r, s are real numbers, and x, y are sets. We now state several propositions:

- (1) If $r \le 0$, then |r| = -r.
- (2) For all n, m such that $n \le m$ and $m \le n+2$ holds m = n or m = n+1 or m = n+2.
- (3) For all n, m such that $n \le m$ and $m \le n+3$ holds m = n or m = n+1 or m = n+2 or m = n+3.
- (4) For all n, m such that $n \le m$ and $m \le n+4$ holds m=n or m=n+1 or m=n+2 or m=n+3 or m=n+4.
- (5) For all real numbers a, b such that $a \ge 0$ and $b \ge 0$ holds $a + b \ge 0$.
- (6) For all real numbers a, b such that a > 0 and $b \ge 0$ holds a + b > 0.
- (7) For every finite sequence f such that $\operatorname{rng} f = \{x, y\}$ and $\operatorname{len} f = 2$ holds f(1) = x and f(2) = y or f(1) = y and f(2) = x.
- (8) Let f be an increasing finite sequence of elements of \mathbb{R} . If rng $f = \{r, s\}$ and len f = 2 and $r \le s$, then f(1) = r and f(2) = s.

In the sequel p, p_1 , p_2 , p_3 , q, q_1 , q_2 denote points of \mathcal{E}_T^n . One can prove the following propositions:

- (9) $(p_1+p_2)-p_3=(p_1-p_3)+p_2.$
- (10) ||q|| = |q|.
- $(11) \quad ||q_1| |q_2|| \le |q_1 q_2|.$
- (12) ||[r]|| = |r|.
- (13) $q 0_{\mathcal{E}_{\mathbf{T}}^n} = q$ and $0_{\mathcal{E}_{\mathbf{T}}^n} q = -q$.
- (14) For every subset P of \mathcal{E}_{T}^{n} such that P is convex holds P is connected.
- (15) Let G be a non empty topological space, P be a subset of G, A be a subset of G, and Q be a subset of $G \mid A$. If P = Q and P is connected, then Q is connected.

Let us consider n and let A be a subset of \mathcal{E}_T^n . We say that A is Bounded if and only if:

(Def. 2)¹ There exists a subset C of \mathcal{E}^n such that C = A and C is bounded.

The following proposition is true

(16) For all subsets A, B of \mathcal{E}_T^n such that B is Bounded and $A \subseteq B$ holds A is Bounded.

Let us consider n, let A be a subset of \mathcal{E}_{T}^{n} , and let B be a subset of \mathcal{E}_{T}^{n} . We say that B is inside component of A if and only if:

(Def. 3) B is a component of A^c and Bounded.

Let *M* be a non empty metric structure. Observe that there exists a subset of *M* which is bounded. One can prove the following proposition

(17) Let A be a subset of \mathcal{E}_T^n and B be a subset of \mathcal{E}_T^n . Then B is inside component of A if and only if there exists a subset C of $(\mathcal{E}_T^n)|A^c$ such that C = B and C is a component of $(\mathcal{E}_T^n)|A^c$ and a bounded subset of \mathcal{E}^n .

Let us consider n, let A be a subset of \mathcal{E}_T^n , and let B be a subset of \mathcal{E}_T^n . We say that B is outside component of A if and only if:

(Def. 4) B is a component of A^c and B is not Bounded.

The following propositions are true:

- (18) Let A be a subset of \mathcal{E}_{T}^{n} and B be a subset of \mathcal{E}_{T}^{n} . Then B is outside component of A if and only if there exists a subset C of $(\mathcal{E}_{T}^{n}) | A^{c}$ such that C = B and C is a component of $(\mathcal{E}_{T}^{n}) | A^{c}$ and C is not a bounded subset of \mathcal{E}^{n} .
- (19) For all subsets A, B of \mathcal{E}_T^n such that B is inside component of A holds $B \subseteq A^c$.
- (20) For all subsets A, B of \mathcal{E}_T^n such that B is outside component of A holds $B \subseteq A^c$.

Let us consider n and let A be a subset of \mathcal{E}_T^n . The functor BDDA yielding a subset of \mathcal{E}_T^n is defined by:

(Def. 5) BDD $A = \bigcup \{B; B \text{ ranges over subsets of } \mathcal{E}_T^n : B \text{ is inside component of } A\}.$

Let us consider n and let A be a subset of \mathcal{E}_T^n . The functor UBDA yielding a subset of \mathcal{E}_T^n is defined as follows:

(Def. 6) UBD $A = \bigcup \{B; B \text{ ranges over subsets of } \mathcal{E}_T^n : B \text{ is outside component of } A\}.$

¹ The definition (Def. 1) has been removed.

The following two propositions are true:

- (21) $\Omega_{\mathcal{E}_{\mathbf{T}}^n}$ is convex.
- (22) $\Omega_{\mathcal{E}_{\mathbf{T}}^n}$ is connected.

Let us consider n. Observe that $\Omega_{\mathcal{E}_{\mathbb{T}}^n}$ is connected. One can prove the following propositions:

- (23) $\Omega_{\mathcal{E}_{\mathbf{T}}^n}$ is a component of $\mathcal{E}_{\mathbf{T}}^n$.
- (24) For every subset A of \mathcal{E}_{T}^{n} holds BDDA is a union of components of $(\mathcal{E}_{T}^{n})|A^{c}$.
- (25) For every subset A of \mathcal{E}_T^n holds UBDA is a union of components of $(\mathcal{E}_T^n) \upharpoonright A^c$.
- (26) For every subset *A* of \mathcal{E}_T^n and for every subset *B* of \mathcal{E}_T^n such that *B* is inside component of *A* holds $B \subseteq BDDA$.
- (27) For every subset *A* of \mathcal{E}_{T}^{n} and for every subset *B* of \mathcal{E}_{T}^{n} such that *B* is outside component of *A* holds $B \subseteq UBDA$.
- (28) For every subset A of \mathcal{E}_{T}^{n} holds BDDA misses UBDA.
- (29) For every subset *A* of \mathcal{E}_{T}^{n} holds BDD $A \subseteq A^{c}$.
- (30) For every subset *A* of \mathcal{E}_{T}^{n} holds UBD $A \subseteq A^{c}$.
- (31) For every subset *A* of \mathcal{E}_T^n holds BDD $A \cup \text{UBD}A = A^c$.

In the sequel u is a point of \mathcal{E}^n .

Next we state two propositions:

- (32) Let G be a non empty topological space, w_1 , w_2 , w_3 be points of G, and h_1 , h_2 be maps from \mathbb{I} into G. Suppose h_1 is continuous and $w_1 = h_1(0)$ and $w_2 = h_1(1)$ and h_2 is continuous and $w_2 = h_2(0)$ and $w_3 = h_2(1)$. Then there exists a map h_3 from \mathbb{I} into G such that h_3 is continuous and $w_1 = h_3(0)$ and $w_3 = h_3(1)$ and $\operatorname{rng} h_3 \subseteq \operatorname{rng} h_1 \cup \operatorname{rng} h_2$.
- (33) For every subset *P* of \mathcal{E}_T^n such that $P = \mathcal{R}^n$ holds *P* is connected.

Let us consider n. The functor 1 * n yields a finite sequence of elements of \mathbb{R} and is defined by:

(Def. 7) $1*n = n \mapsto (1 \text{ qua } \text{real number}).$

Let us consider n. Then 1 * n is an element of \mathbb{R}^n .

Let us consider n. The functor 1.REAL n yielding a point of \mathcal{E}_T^n is defined as follows:

(Def. 8) 1.REAL n = 1 * n.

One can prove the following propositions:

- (34) $|1*n| = n \mapsto (1 \text{ qua } \text{real number}).$
- (35) $|1*n| = \sqrt{n}$.
- (36) 1.REAL $1 = \langle (1 \text{ qua } \text{real number}) \rangle$.
- (37) $|1.REAL n| = \sqrt{n}$.
- (38) If $1 \le n$, then $1 \le |1.REAL n|$.
- (39) For every subset W of \mathcal{E}^n such that $n \ge 1$ and $W = \mathcal{R}^n$ holds W is not bounded.
- (40) Let A be a subset of \mathcal{E}_{T}^{n} . Then A is Bounded if and only if there exists a real number r such that for every point q of \mathcal{E}_{T}^{n} such that $q \in A$ holds |q| < r.

- (41) If $n \ge 1$, then $\Omega_{\mathcal{E}_{\Gamma}^n}$ is not Bounded.
- (42) If $n \ge 1$, then UBD $\emptyset_{\mathcal{E}_T^n} = \mathcal{R}^n$.
- (43) Let w_1 , w_2 , w_3 be points of \mathcal{E}_T^n , P be a non empty subset of \mathcal{E}_T^n , and h_1 , h_2 be maps from \mathbb{I} into $(\mathcal{E}_T^n) \upharpoonright P$. Suppose h_1 is continuous and $w_1 = h_1(0)$ and $w_2 = h_1(1)$ and h_2 is continuous and $w_2 = h_2(0)$ and $w_3 = h_2(1)$. Then there exists a map h_3 from \mathbb{I} into $(\mathcal{E}_T^n) \upharpoonright P$ such that h_3 is continuous and $w_1 = h_3(0)$ and $w_3 = h_3(1)$.
- (44) Let P be a subset of \mathcal{E}_{T}^{n} and w_{1} , w_{2} , w_{3} be points of \mathcal{E}_{T}^{n} . Suppose $w_{1} \in P$ and $w_{2} \in P$ and $w_{3} \in P$ and $\mathcal{L}(w_{1}, w_{2}) \subseteq P$ and $\mathcal{L}(w_{2}, w_{3}) \subseteq P$. Then there exists a map h from \mathbb{I} into $(\mathcal{E}_{T}^{n}) \upharpoonright P$ such that h is continuous and $w_{1} = h(0)$ and $w_{3} = h(1)$.
- (45) Let P be a subset of $\mathcal{E}_{\mathbf{T}}^n$ and w_1 , w_2 , w_3 , w_4 be points of $\mathcal{E}_{\mathbf{T}}^n$. Suppose $w_1 \in P$ and $w_2 \in P$ and $w_3 \in P$ and $w_4 \in P$ and $\mathcal{L}(w_1, w_2) \subseteq P$ and $\mathcal{L}(w_2, w_3) \subseteq P$ and $\mathcal{L}(w_3, w_4) \subseteq P$. Then there exists a map h from \mathbb{I} into $(\mathcal{E}_{\mathbf{T}}^n) \upharpoonright P$ such that h is continuous and $w_1 = h(0)$ and $w_4 = h(1)$.
- (46) Let P be a subset of \mathcal{E}_{T}^{n} and w_{1} , w_{2} , w_{3} , w_{4} , w_{5} , w_{6} , w_{7} be points of \mathcal{E}_{T}^{n} . Suppose $w_{1} \in P$ and $w_{2} \in P$ and $w_{3} \in P$ and $w_{4} \in P$ and $w_{5} \in P$ and $w_{6} \in P$ and $w_{7} \in P$ and $\mathcal{L}(w_{1}, w_{2}) \subseteq P$ and $\mathcal{L}(w_{2}, w_{3}) \subseteq P$ and $\mathcal{L}(w_{3}, w_{4}) \subseteq P$ and $\mathcal{L}(w_{4}, w_{5}) \subseteq P$ and $\mathcal{L}(w_{5}, w_{6}) \subseteq P$ and $\mathcal{L}(w_{6}, w_{7}) \subseteq P$. Then there exists a map h from \mathbb{I} into $(\mathcal{E}_{T}^{n}) \upharpoonright P$ such that h is continuous and $w_{1} = h(0)$ and $w_{7} = h(1)$.
- (47) For all points w_1 , w_2 of \mathcal{E}_T^n such that it is not true that there exists a real number r such that $w_1 = r \cdot w_2$ or $w_2 = r \cdot w_1$ holds $0_{\mathcal{E}_T^n} \notin \mathcal{L}(w_1, w_2)$.
- (48) Let w_1 , w_2 be points of \mathcal{E}^n_T and P be a subset of $(\mathcal{E}^n)_{top}$. Suppose $P = \mathcal{L}(w_1, w_2)$ and $0_{\mathcal{E}^n_T} \notin \mathcal{L}(w_1, w_2)$. Then there exists a point w_0 of \mathcal{E}^n_T such that $w_0 \in \mathcal{L}(w_1, w_2)$ and $|w_0| > 0$ and $|w_0| = (\operatorname{dist}_{\min}(P))(0_{\mathcal{E}^n_T})$.
- (49) Let a be a real number, Q be a subset of \mathcal{E}_{T}^{n} , and w_{1} , w_{4} be points of \mathcal{E}_{T}^{n} . Suppose $Q = \{q : |q| > a\}$ and $w_{1} \in Q$ and $w_{4} \in Q$ and it is not true that there exists a real number r such that $w_{1} = r \cdot w_{4}$ or $w_{4} = r \cdot w_{1}$. Then there exist points w_{2} , w_{3} of \mathcal{E}_{T}^{n} such that $w_{2} \in Q$ and $w_{3} \in Q$ and $\mathcal{L}(w_{1}, w_{2}) \subseteq Q$ and $\mathcal{L}(w_{2}, w_{3}) \subseteq Q$ and $\mathcal{L}(w_{3}, w_{4}) \subseteq Q$.
- (50) Let a be a real number, Q be a subset of $\mathcal{E}_{\mathrm{T}}^n$, and w_1 , w_4 be points of $\mathcal{E}_{\mathrm{T}}^n$. Suppose $Q = \mathcal{R}^n \setminus \{q : |q| < a\}$ and $w_1 \in Q$ and $w_4 \in Q$ and it is not true that there exists a real number r such that $w_1 = r \cdot w_4$ or $w_4 = r \cdot w_1$. Then there exist points w_2 , w_3 of $\mathcal{E}_{\mathrm{T}}^n$ such that $w_2 \in Q$ and $w_3 \in Q$ and $\mathcal{L}(w_1, w_2) \subseteq Q$ and $\mathcal{L}(w_2, w_3) \subseteq Q$ and $\mathcal{L}(w_3, w_4) \subseteq Q$.
- $(52)^2$ Every finite sequence f of elements of \mathbb{R} is an element of $\mathcal{R}^{\text{len } f}$ and a point of $\mathcal{E}_{\text{T}}^{\text{len } f}$.
- (53) Let x be an element of \mathbb{R}^n , f, g be finite sequences of elements of \mathbb{R} , and r be a real number. Suppose f = x and $g = r \cdot x$. Then len f = len g and for every natural number i such that $1 \le i$ and $i \le \text{len } f$ holds $g_i = r \cdot f_i$.
- (54) Let x be an element of \mathbb{R}^n and f be a finite sequence. Suppose $x \neq \langle \underbrace{0, \dots, 0}_n \rangle$ and x = f. Then there exists a natural number i such that $1 \leq i$ and $i \leq n$ and $f(i) \neq 0$.
- (55) Let x be an element of \mathbb{R}^n . Suppose $n \ge 2$ and $x \ne \langle \underbrace{0, \dots, 0}_n \rangle$. Then it is not true that there exists an element y of \mathbb{R}^n and there exists a real number r such that $y = r \cdot x$ or $x = r \cdot y$.
- (56) Let a be a real number, Q be a subset of \mathcal{E}_{T}^{n} , and w_{1} , w_{7} be points of \mathcal{E}_{T}^{n} . Suppose $n \geq 2$ and $Q = \{q : |q| > a\}$ and $w_{1} \in Q$ and $w_{7} \in Q$ and there exists a real number r such that $w_{1} = r \cdot w_{7}$ or $w_{7} = r \cdot w_{1}$. Then there exist points w_{2} , w_{3} , w_{4} , w_{5} , w_{6} of \mathcal{E}_{T}^{n} such that $w_{2} \in Q$ and $w_{3} \in Q$ and $w_{4} \in Q$ and $w_{5} \in Q$ and $w_{6} \in Q$ and $\mathcal{L}(w_{1}, w_{2}) \subseteq Q$ and $\mathcal{L}(w_{2}, w_{3}) \subseteq Q$ and $\mathcal{L}(w_{3}, w_{4}) \subseteq Q$ and $\mathcal{L}(w_{4}, w_{5}) \subseteq Q$ and $\mathcal{L}(w_{5}, w_{6}) \subseteq Q$ and $\mathcal{L}(w_{6}, w_{7}) \subseteq Q$.

² The proposition (51) has been removed.

- (57) Let a be a real number, Q be a subset of $\mathcal{E}_{\mathrm{T}}^n$, and w_1, w_7 be points of $\mathcal{E}_{\mathrm{T}}^n$. Suppose $n \geq 2$ and $Q = \mathcal{R}^n \setminus \{q : |q| < a\}$ and $w_1 \in Q$ and $w_7 \in Q$ and there exists a real number r such that $w_1 = r \cdot w_7$ or $w_7 = r \cdot w_1$. Then there exist points w_2, w_3, w_4, w_5, w_6 of $\mathcal{E}_{\mathrm{T}}^n$ such that $w_2 \in Q$ and $w_3 \in Q$ and $w_4 \in Q$ and $w_5 \in Q$ and $w_6 \in Q$ and $\mathcal{L}(w_1, w_2) \subseteq Q$ and $\mathcal{L}(w_2, w_3) \subseteq Q$ and $\mathcal{L}(w_3, w_4) \subseteq Q$ and $\mathcal{L}(w_4, w_5) \subseteq Q$ and $\mathcal{L}(w_5, w_6) \subseteq Q$ and $\mathcal{L}(w_6, w_7) \subseteq Q$.
- (58) For every real number a such that $n \ge 1$ holds $\{q : |q| > a\} \ne \emptyset$.
- (59) For every real number a and for every subset P of \mathcal{E}_T^n such that $n \ge 2$ and $P = \{q : |q| > a\}$ holds P is connected.
- (60) For every real number a such that $n \ge 1$ holds $\Re^n \setminus \{q : |q| < a\} \ne \emptyset$.
- (61) For every real number a and for every subset P of \mathcal{E}_{T}^{n} such that $n \geq 2$ and $P = \mathcal{R}^{n} \setminus \{q : |q| < a\}$ holds P is connected.
- (62) Let a be a real number, n be a natural number, and P be a subset of \mathcal{E}_T^n . If $n \ge 1$ and $P = \mathcal{R}^n \setminus \{q; q \text{ ranges over points of } \mathcal{E}_T^n \colon |q| < a\}$, then P is not Bounded.
- (63) Let a be a real number and P be a subset of \mathcal{E}_T^1 . If $P = \{q; q \text{ ranges over points of } \mathcal{E}_T^1$: $\bigvee_r (q = \langle r \rangle \land r > a)\}$, then P is convex.
- (64) Let a be a real number and P be a subset of \mathcal{E}_T^1 . If $P = \{q; q \text{ ranges over points of } \mathcal{E}_T^1$: $\bigvee_r (q = \langle r \rangle \land r < -a) \}$, then P is convex.
- (65) Let a be a real number and P be a subset of \mathcal{E}_T^1 . Suppose $P = \{q; q \text{ ranges over points of } \mathcal{E}_T^1 : \bigvee_r (q = \langle r \rangle \land r > a) \}$. Then P is connected.
- (66) Let a be a real number and P be a subset of \mathcal{E}^1_T . Suppose $P = \{q; q \text{ ranges over points of } \mathcal{E}^1_T$: $\bigvee_r (q = \langle r \rangle \land r < -a)\}$. Then P is connected.
- (67) Let W be a subset of \mathcal{E}^1 , a be a real number, and P be a subset of \mathcal{E}^1_T . Suppose $W = \{q; q \text{ ranges over points of } \mathcal{E}^1_T$: $\bigvee_r (q = \langle r \rangle \land r > a) \}$ and P = W. Then P is connected and W is not bounded.
- (68) Let W be a subset of \mathcal{E}^1 , a be a real number, and P be a subset of \mathcal{E}^1 . Suppose $W = \{q; q \text{ ranges over points of } \mathcal{E}^1_T$: $\bigvee_r (q = \langle r \rangle \land r < -a) \}$ and P = W. Then P is connected and W is not bounded.
- (69) Let W be a subset of \mathcal{E}^n , a be a real number, and P be a subset of \mathcal{E}^n_T . If $n \ge 2$ and $W = \{q : |q| > a\}$ and P = W, then P is connected and W is not bounded.
- (70) Let W be a subset of \mathcal{E}^n , a be a real number, and P be a subset of \mathcal{E}^n_T . If $n \ge 2$ and $W = \mathcal{R}^n \setminus \{q : |q| < a\}$ and P = W, then P is connected and W is not bounded.
- (71) Let P, P_1 be subsets of \mathcal{E}_T^n , Q be a subset of \mathcal{E}_T^n , and W be a subset of \mathcal{E}^n . Suppose P = W and P is connected and W is not bounded and $P_1 = \text{Component}(\text{Down}(P, Q^c))$ and W misses Q. Then P_1 is outside component of Q.
- (72) Let A be a subset of \mathcal{E}^n , B be a non empty subset of \mathcal{E}^n , and C be a subset of $\mathcal{E}^n \upharpoonright B$. If $A \subseteq B$ and A = C and C is bounded, then A is bounded.
- (73) For every subset A of \mathcal{E}_{T}^{n} such that A is compact holds A is Bounded.
- (74) For every subset A of \mathcal{E}_T^n such that $1 \le n$ and A is Bounded holds $A^c \ne \emptyset$.
- (75) Let r be a real number. Then there exists a subset B of \mathcal{E}^n such that $B = \{q : |q| < r\}$ and for every subset A of \mathcal{E}^n such that $A = \{q_1 : |q_1| < r\}$ holds A is bounded.
- (76) Let *A* be a subset of \mathcal{E}_T^n . Suppose $n \ge 2$ and *A* is Bounded. Then there exists a subset *B* of \mathcal{E}_T^n such that *B* is outside component of *A* and B = UBDA.

- (77) For every real number a and for every subset P of \mathcal{E}_T^n such that $P = \{q : |q| < a\}$ holds P is convex.
- (78) For every real number a and for every subset P of \mathcal{E}_T^n such that P = Ball(u, a) holds P is convex.
- (79) For every real number a and for every subset P of \mathcal{E}_{T}^{n} such that $P = \{q : |q| < a\}$ holds P is connected.

In the sequel R denotes a subset of \mathcal{E}_T^n and P denotes a subset of \mathcal{E}_T^n . Next we state a number of propositions:

- (80) Suppose $p \neq q$ and $p \in Ball(u, r)$ and $q \in Ball(u, r)$. Then there exists a map h from \mathbb{I} into \mathcal{E}_T^n such that h is continuous and h(0) = p and h(1) = q and $rngh \subseteq Ball(u, r)$.
- (81) Let f be a map from \mathbb{I} into $\mathcal{E}_{\mathbb{T}}^n$. Suppose f is continuous and $f(0) = p_1$ and $f(1) = p_2$ and $p \in \text{Ball}(u,r)$ and $p_2 \in \text{Ball}(u,r)$. Then there exists a map h from \mathbb{I} into $\mathcal{E}_{\mathbb{T}}^n$ such that h is continuous and $h(0) = p_1$ and h(1) = p and $\operatorname{rng} h \subseteq \operatorname{rng} f \cup \operatorname{Ball}(u,r)$.
- (82) Let f be a map from \mathbb{I} into $\mathcal{E}_{\mathbb{T}}^n$. Suppose f is continuous and rng $f \subseteq P$ and $f(0) = p_1$ and $f(1) = p_2$ and $p \in \text{Ball}(u, r)$ and $p_2 \in \text{Ball}(u, r)$ and $p_3 \in \text{Ball}(u, r) \subseteq P$. Then there exists a map f_1 from \mathbb{I} into $\mathcal{E}_{\mathbb{T}}^n$ such that f_1 is continuous and rng $f_1 \subseteq P$ and $f_1(0) = p_1$ and $f_1(1) = p$.
- (83) Let given p and P be a subset of \mathcal{E}_T^n . Suppose that
 - (i) R is connected and open, and
- (ii) $P = \{q : q \neq p \land q \in R \land \neg \bigvee_{f : \text{map from } \mathbb{I} \text{ into } \mathcal{E}^n_{\mathbf{T}} \text{ } (f \text{is continuous } \land \text{ rng } f \subseteq R \land f(0) = p \land f(1) = q) \}.$

Then P is open.

- (84) Let *P* be a subset of \mathcal{E}_{T}^{n} . Suppose that
 - (i) R is connected and open,
- (ii) $p \in R$, and
- (iii) $P = \{q : q = p \lor \bigvee_{f : \text{map from } \mathbb{I} \text{ into } \mathcal{E}_{\mathbb{T}}^n \ (f \text{is continuous} \land \operatorname{rng} f \subseteq R \land f(0) = p \land f(1) = q)\}.$

Then P is open.

- (85) Let R be a subset of \mathcal{E}^n_T . Suppose $p \in R$ and $P = \{q : q = p \lor \bigvee_{f : \text{map from } \mathbb{I} \text{ into } \mathcal{E}^n_T \text{ (}f \text{ is continuous } \land \text{rng } f \subseteq R \land f(0) = p \land f(1) = q) \}$. Then $P \subseteq R$.
- (86) Let R be a subset of \mathcal{E}_T^n and p be a point of \mathcal{E}_T^n . Suppose that
 - (i) R is connected and open,
- (ii) $p \in R$, and
- (iii) $P = \{q : q = p \lor \bigvee_{f : \text{map from } \mathbb{I} \text{ into } \mathcal{E}_{\mathbb{T}}^n \ (f \text{is continuous} \land \operatorname{rng} f \subseteq R \land f(0) = p \land f(1) = q)\}.$

Then $R \subseteq P$.

- (87) Let R be a subset of \mathcal{E}_{T}^{n} and p, q be points of \mathcal{E}_{T}^{n} . Suppose R is connected and open and $p \in R$ and $q \in R$ and $p \neq q$. Then there exists a map f from \mathbb{I} into \mathcal{E}_{T}^{n} such that f is continuous and rng $f \subseteq R$ and f(0) = p and f(1) = q.
- (88) For every subset A of \mathcal{E}_{T}^{n} and for every real number a such that $A = \{q : |q| = a\}$ holds A^{c} is open and A is closed.
- (89) For every non empty subset *B* of \mathcal{E}_{T}^{n} such that *B* is open holds $(\mathcal{E}_{T}^{n}) \upharpoonright B$ is locally connected.
- (90) Let B be a non empty subset of \mathcal{E}_T^n , A be a subset of \mathcal{E}_T^n , and a be a real number. If $A = \{q : |q| = a\}$ and $A^c = B$, then $(\mathcal{E}_T^n) \upharpoonright B$ is locally connected.

- (91) For every map f from \mathcal{E}_T^n into \mathbb{R}^1 such that for every q holds f(q) = |q| holds f is continuous.
- (92) There exists a map f from \mathcal{E}_T^n into \mathbb{R}^1 such that for every q holds f(q) = |q| and f is continuous.

Let X, Y be non empty 1-sorted structures, let f be a map from X into Y, and let x be a set. Let us assume that x is a point of X. The functor $\pi_x f$ yields a point of Y and is defined as follows:

(Def. 10)³
$$\pi_x f = f(x)$$
.

The following four propositions are true:

- (93) Let g be a map from \mathbb{I} into $\mathcal{E}_{\mathbb{T}}^n$. Suppose g is continuous. Then there exists a map f from \mathbb{I} into \mathbb{R}^1 such that for every point t of \mathbb{I} holds f(t) = |g(t)| and f is continuous.
- (94) Let g be a map from \mathbb{I} into $\mathcal{E}_{\mathbb{T}}^n$ and a be a real number. Suppose g is continuous and $|\pi_0 g| \le a$ and $a \le |\pi_1 g|$. Then there exists a point s of \mathbb{I} such that $|\pi_s g| = a$.
- (95) If $q = \langle r \rangle$, then |q| = |r|.
- (96) Let *A* be a subset of \mathcal{E}_T^n and *a* be a real number. Suppose $n \ge 1$ and a > 0 and $A = \{q : |q| = a\}$. Then there exists a subset *B* of \mathcal{E}_T^n such that *B* is inside component of *A* and B = BDDA.

2. BOUNDED AND UNBOUNDED DOMAINS OF RECTANGLES

In the sequel D denotes a non vertical non horizontal non empty compact subset of \mathcal{E}_T^2 . The following propositions are true:

- (97) len the Go-board of $\operatorname{SpStSeq}D=2$ and width the Go-board of $\operatorname{SpStSeq}D=2$ and $(\operatorname{SpStSeq}D)_1=$ the Go-board of $\operatorname{SpStSeq}D\circ(1,2)$ and $(\operatorname{SpStSeq}D)_2=$ the Go-board of $\operatorname{SpStSeq}D\circ(2,2)$ and $(\operatorname{SpStSeq}D)_3=$ the Go-board of $\operatorname{SpStSeq}D\circ(2,1)$ and $(\operatorname{SpStSeq}D)_4=$ the Go-board of $\operatorname{SpStSeq}D\circ(1,1)$ and $(\operatorname{SpStSeq}D)_5=$ the Go-board of $\operatorname{SpStSeq}D\circ(1,2)$.
- (98) LeftComp(SpStSeqD) is non Bounded.
- (99) LeftComp(SpStSeq D) \subseteq UBD \mathcal{L} (SpStSeq D).
- (100) Let G be a topological space and A, B, C be subsets of G. Suppose A is a component of G and B is a component of G and C is connected and A meets C and B meets C. Then A = B.
- (101) For every subset B of \mathcal{E}^2_T such that B is a component of $(\widetilde{\mathcal{L}}(\operatorname{SpStSeq}D))^c$ and B is not Bounded holds $B = \operatorname{LeftComp}(\operatorname{SpStSeq}D)$.
- (102) RightComp(SpStSeqD) \subseteq BDD $\widetilde{\mathcal{L}}$ (SpStSeqD) and RightComp(SpStSeqD) is Bounded.
- (103) LeftComp(SpStSeq D) = UBD $\widetilde{\mathcal{L}}$ (SpStSeq D) and RightComp(SpStSeq D) = BDD $\widetilde{\mathcal{L}}$ (SpStSeq D).
- (104) UBD $\widetilde{\mathcal{L}}(\operatorname{SpStSeq}D) \neq \emptyset$ and UBD $\widetilde{\mathcal{L}}(\operatorname{SpStSeq}D)$ is outside component of $\widetilde{\mathcal{L}}(\operatorname{SpStSeq}D)$ and BDD $\widetilde{\mathcal{L}}(\operatorname{SpStSeq}D) \neq \emptyset$ and BDD $\widetilde{\mathcal{L}}(\operatorname{SpStSeq}D)$ is inside component of $\widetilde{\mathcal{L}}(\operatorname{SpStSeq}D)$.

³ The definition (Def. 9) has been removed.

3. JORDAN PROPERTY AND BOUNDARY PROPERTY

We now state several propositions:

- (105) Let G be a non empty topological space and A be a subset of G. Suppose $A^c \neq \emptyset$. Then A is boundary if and only if for every set x and for every subset V of G such that $x \in A$ and $x \in V$ and V is open there exists a subset B of G such that B is a component of A^c and V meets B.
- (106) Let A be a subset of \mathcal{E}_{T}^{2} . Suppose $A^{c} \neq \emptyset$. Then A is boundary and Jordan if and only if there exist subsets A_{1} , A_{2} of \mathcal{E}_{T}^{2} such that $A^{c} = A_{1} \cup A_{2}$ and A_{1} misses A_{2} and $\overline{A_{1}} \setminus A_{1} = \overline{A_{2}} \setminus A_{2}$ and $A = \overline{A_{1}} \setminus A_{1}$ and for all subsets C_{1} , C_{2} of $(\mathcal{E}_{T}^{2}) \upharpoonright A^{c}$ such that $C_{1} = A_{1}$ and $C_{2} = A_{2}$ holds C_{1} is a component of $(\mathcal{E}_{T}^{2}) \upharpoonright A^{c}$ and C_{2} is a component of $(\mathcal{E}_{T}^{2}) \upharpoonright A^{c}$.
- (107) For every point p of \mathcal{E}_T^n and for every subset P of \mathcal{E}_T^n such that $n \ge 1$ and $P = \{p\}$ holds P is boundary.
- (108) For all points p, q of \mathcal{E}_T^2 and for every r such that $p_1 = q_2$ and $-p_2 = q_1$ and $p = r \cdot q$ holds $p_1 = 0$ and $p_2 = 0$ and p = 0.
- (109) For all points q_1 , q_2 of \mathcal{E}^2_T holds $\mathcal{L}(q_1, q_2)$ is boundary.

Let q_1, q_2 be points of \mathcal{E}^2_T . One can verify that $\mathcal{L}(q_1, q_2)$ is boundary. One can prove the following proposition

(110) For every finite sequence f of elements of \mathcal{E}^2_T holds $\widetilde{\mathcal{L}}(f)$ is boundary.

Let f be a finite sequence of elements of \mathcal{E}^2_T . Note that $\widetilde{\mathcal{L}}(f)$ is boundary. Next we state several propositions:

- (111) For every point e_1 of \mathcal{E}^n and for all points p, q of \mathcal{E}^n_T such that $p = e_1$ and $q \in Ball(e_1, r)$ holds |p q| < r and |q p| < r.
- (112) Let a be a real number and p be a point of \mathcal{E}^2_T . Suppose a > 0 and $p \in \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$. Then there exists a point q of \mathcal{E}^2_T such that $q \in \operatorname{UBD} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$ and |p-q| < a.
- (113) $\mathcal{R}^0 = \{0_{\mathcal{F}_m^0}\}.$
- (114) For every subset A of \mathcal{E}_T^n such that A is Bounded holds BDDA is Bounded.
- (115) Let G be a non empty topological space and A, B, C, D be subsets of G. Suppose A is a component of G and B is a component of G and C is a component of G and C misses C. Then C = B.
- (116) For every subset A of \mathcal{E}_T^2 such that A is Bounded and Jordan holds BDDA is inside component of A.
- (117) Let a be a real number and p be a point of $\mathcal{E}_{\mathbb{T}}^2$. Suppose a>0 and $p\in \widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$. Then there exists a point q of $\mathcal{E}_{\mathbb{T}}^2$ such that $q\in \operatorname{BDD}\widetilde{\mathcal{L}}(\operatorname{SpStSeq} D)$ and |p-q|< a.

4. Points in LeftComp

In the sequel f is a clockwise oriented non constant standard special circular sequence. One can prove the following propositions:

- (118) For every point p of \mathcal{E}^2_T such that $f_1 = \mathrm{N}_{\min}(\widetilde{\mathcal{L}}(f))$ and $p_1 < \mathrm{W\text{-}bound}(\widetilde{\mathcal{L}}(f))$ holds $p \in \mathrm{LeftComp}(f)$.
- (119) For every point p of \mathcal{E}^2_T such that $f_1 = \mathrm{N}_{\min}(\widetilde{\mathcal{L}}(f))$ and $p_1 > \mathrm{E}\text{-bound}(\widetilde{\mathcal{L}}(f))$ holds $p \in \mathrm{LeftComp}(f)$.

- (120) For every point p of \mathcal{E}^2_T such that $f_1 = N_{\min}(\widetilde{\mathcal{L}}(f))$ and $p_2 < S$ -bound $(\widetilde{\mathcal{L}}(f))$ holds $p \in \text{LeftComp}(f)$.
- (121) For every point p of \mathcal{E}^2_T such that $f_1 = N_{\min}(\widetilde{\mathcal{L}}(f))$ and $p_2 > N$ -bound $(\widetilde{\mathcal{L}}(f))$ holds $p \in \text{LeftComp}(f)$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [5] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JEM/Vol7/weierstr.html
- [6] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps 1.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseg 2.html.
- [11] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rvsum_1.html.
- [12] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/pscomp_1.html.
- [13] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [14] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [15] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [16] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_{\begin{subarray}{c}\pi}^2\). Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
- [17] Alicia de la Cruz. Totally bounded metric spaces. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/tbsp_1.html.
- [18] Krzysztof Hryniewiecki. Basic properties of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [19] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/matrix_1.html.
- [20] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [21] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seq_4.html.
- [22] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard1.html.
- [23] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part II. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard2.html.
- [24] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [25] Roman Matuszewski and Yatsuka Nakamura. Projections in n-dimensional Euclidean space to each coordinates. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/jordan2b.html.

- [26] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons, part I. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/sppol_1.html.
- [27] Yatsuka Nakamura and Jarosław Kotowicz. The Jordan's property for certain subsets of the plane. *Journal of Formalized Mathematics*, 4, 1992. http://mizar.org/JFM/Vol4/jordan1.html.
- [28] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/goboard5.html.
- [29] Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/connsp_3.html.
- [30] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [31] Beata Padlewska. Connected spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/connsp_1.html.
- [32] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [33] Beata Padlewska. Locally connected spaces. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/connsp_2.html.
- [34] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [35] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [36] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in \mathcal{E}_{T}^{N} . Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/toprns_1.html.
- [37] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [38] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [39] Andrzej Trybulec. Left and right component of the complement of a special closed curve. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/goboard9.html.
- [40] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [41] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.
- [42] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/sprect_2.html.
- [43] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the points of the plane. *Journal of Formalized Mathematics*, 9, 1997. http://mizar.org/JFM/Vol9/sprect_1.html.
- [44] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [45] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [46] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [47] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_1.html.

Received January 7, 1999

Published January 2, 2004