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Summary. First, notions of inside components and outside components are intro-
duced for any subset afdimensional Euclid space. Next, notions of the bounded domain
and the unbounded domain are defined using the above components. If the dimension is larger
than 1, and if a subset is bounded, a unbounded domain of the subset coincides with an outside
component (which is unique) of the subset. For a spheredmensional space, the similar
fact is true for a bounded domain. In 2 dimensional space, any rectangle also has such prop-
erty. We discussed relations between the Jordan property and the concept of boundary, which
are necessary to find points in domains near a curve. In the last part, we gave the sufficient
criterion for belonging to the left component of some clockwise oriented finite sequences.
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The articles[[38],[[9],[[45],[[32],[[46]/[17],18],[3],[140D],[118] (1] [11],134],147],113][[20]16] [131],
133, [27], [29], [36], [15], [4], [10], [42], [41], [35], [5], [21], [30], [37], [24], [11], [14],126],[12],
[43], [42], [16], [19], [22], [21], [23], [28], [39], and[[25] provide the notation and terminology for
this paper.

1. DEFINITIONS OFBOUNDED DOMAIN AND UNBOUNDED DOMAIN

We use the following conventiomn, n are natural numbers, sare real numbers, angy are sets.
We now state several propositions:

(1) Ifr <o, thenjr| = —r.
(2) Foralln, msuchthah < mandm<n+2holdsm=norm=n+1orm=n+2.

(3) For alln, msuch tham<mandm<n+3 holdsm=norm=n+1orm=n+2 or
m=n+3.

(4) For alln, msuch tham<mandm<n+4 holdsm=norm=n+1orm=n+2 or
m=n+30orm=n+4.

(5) For all real numbera, b such thata > 0 andb > 0 holdsa+b > 0.
(6) For all real numbera, b such thag > 0 andb > 0 holdsa+ b > 0.

(7) For every finite sequence such that rng = {x,y} and lenf = 2 holds f(1) = x and
f(2)=yor f(1) =yandf(2) =x

(8) Letf be an increasing finite sequence of elemenfR.df rng f = {r,s} and lenf =2 and
r <s,thenf(l)=randf(2)=s.

1 © Association of Mizar Users
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In the sequep, p1, P2, 3, , 01, G2 denote points ofE].
One can prove the following propositions:

(9 (p1+p2) —pP3=(pPL—P3)+ P2

(20) gl =1ql-
(11) jaz| = |ae|] < [ — 2.
2) )l = Ir]-

(13) q—O0zr=qand Gz —q=—q.
(14) For every subsét of £7 such thaP is convex holds is connected.

(15) LetG be a non empty topological spa¢ebe a subset db, A be a subset db, andQ be a
subset ofGTA. If P = Q andP is connected, the® is connected.

Let us considen and letA be a subset of]. We say thaA is Bounded if and only if:
(Def. 2] There exists a subsétof £" such thaC = A andC is bounded.
The following proposition is true
(16) For all subsets, B of 7 such thaB is Bounded and\ C B holdsA is Bounded.

Let us considen, let A be a subset of7, and letB be a subset of{. We say thaB is inside
component oA if and only if:

(Def. 3) Bis a component of® and Bounded.

LetM be a non empty metric structure. Observe that there exists a suldéetlth is bounded.
One can prove the following proposition

(17) LetAbe a subset off andB be a subset of]. ThenB is inside component oA if and
only if there exists a subs€tof (£7)A® such thaC = B andC is a component of £7) [A°
and a bounded subset &f".

Let us considen, let A be a subset of7, and letB be a subset of7. We say thaB is outside
component oA if and only if:

(Def. 4) Bis a component oA® andB is not Bounded.

The following propositions are true:

(18) LetAbe a subset o7 andB be a subset of7. ThenB is outside component & if and
only if there exists a subs€tof (£7) [A® such thaC = B andC is a component of £7) [A°
andC is not a bounded subset &f".

(19) For all subsets, B of £7 such thaB is inside component ok holdsB C A°.

(20) For all subsets, B of £{ such thaB is outside component & holdsB C A°.

Let us considen and letA be a subset of£7. The functor BDDA yielding a subset of] is
defined by:

(Def. 5) BDDA = J{B;Branges over subsets &f': B is inside component ok}.

Let us considen and letA be a subset o£}. The functor UBDA yielding a subset ofz] is
defined as follows:

(Def. 6) UBDA = J{B;B ranges over subsets &f: B is outside component &}.

1 The definition (Def. 1) has been removed.
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The following two propositions are true:

(21) Qgn is convex.
(22) Qgn is connected.

Let us considen. Observe thang? is connected.
One can prove the following propositions:

(23) Qg is a component ofy.
(24) For every subseX of 7 holds BDDA is a union of components ¢7) [A°.
(25) For every subsét of £7 holds UBDA is a union of components ¢f]) |A°.

(26) For every subseX of £7 and for every subsd of £} such thaB is inside component of
AholdsB C BDDA.

(27) For every subsét of £7 and for every subsé of £ such thaB is outside component of
AholdsB C UBDA.

(28) For every subsét of £} holds BDDA misses UBDA.
(29) For every subsét of £7 holds BDDA C A°.
(30) For every subsét of £7 holds UBDA C A°.
(31) For every subsét of £{ holds BDDAUUBDA = A°.

In the sequel is a point of E".
Next we state two propositions:

(32) LetG be a non empty topological spacg, w., w3 be points ofG, andhz, h, be maps
fromI into G. Supposé; is continuous angv; = hy(0) andw, = hy(1) andhy is continuous
andw; = hy(0) andws = hy(1). Then there exists a mag from I into G such thaths is
continuous anav; = h3(0) andws = h3(1) and rnghs C rngh; Urngha.

(83) For every subsdt of £} such thaP = R " holdsP is connected.
Let us considen. The functor X n yields a finite sequence of elementsfband is defined by:
(Def. 7)  1xn=n~ (1quareal numbey.

Let us considen. Then 1xnis an element o ".
Let us considen. The functor IREAL nyielding a point of£7 is defined as follows:

(Def.8) L1REALNn=1xn.

One can prove the following propositions:

(34) |1xn|=n~ (1quareal numbey.

(35) |1xn|=n.

(36) 1REAL1= ((1quareal number).

(37) |1REALn| =M.

(38) If1<n,then 1<|1.REALN.

(39) For every subs&V of £" such thah > 1 andW = R " holdsW is not bounded.

(40) LetAbe asubset off. ThenAis Bounded if and only if there exists a real numbsuch
that for every poingj of £{ such thafj € A holds|q| <.
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(41) Ifn> 1, thenQgn is not Bounded.
(42) Ifn>1,then UBDOzn = R".

(43) Letwy, wp, ws be points ofE{, P be a non empty subset @f, andhy, h, be maps froni
into (Z£7)[P. Supposeé, is continuous angvy = hy(0) andw, = hy(1) andh; is continuous
andw, = hy(0) andws = hy(1). Then there exists a map from I into (£7) [P such thahs
is continuous and;, = h3(0) andws = hg(1).

(44) LetP be a subset of7 andw;, wo, w3 be points ofE{. Supposev; € P andw, € P and
ws € P andL£(wq,w2) € P and£(wo,ws) C P. Then there exists a mapfrom I into (£7) [P
such that is continuous anel; = h(0) andws = h(1).

(45) LetP be a subset off andwi, wa, wa, ws be points of£]. Supposav; € P andw, € P
andws € Pandw; € P and£(wq,wo) C PandL(wg,ws) C PandL(ws,wa) C P. Then there
exists a mah from I into (1) [P such that is continuous andv; = h(0) andw, = h(1).

(46) LetP be a subset ofT andwy, Wy, Wa, Wa, Ws, We, W7 be points of£{. Supposev; € P
andw; € P andws € P andw, € P andws € P andwg € P andw; € P and £(wy,w;) C P and
L(wa,w3) C PandL(ws,wa) C PandL(ws,ws) C PandL(ws,wg) C PandL(wg,w7) CP.
Then there exists a mapfrom I into (Z£7) [P such thath is continuous andv; = h(0) and
Wy = h(l)

(47) For all pointsvy, w, of 7 such that it is not true that there exists a real nuntserch that
Wi =T-W, Oorw, =r-wp holds OE? ¢ L(W1,Wz).

(48) Letwi, wo be points of £ and P be a subset ofE")iop. SupposeP = L(wq,W2) and
Ogn ¢ L(W17\{vz). Then there exists a poimp of £7 such thatg € £(wq,w2) and|wp| > 0
and|wo| = (distmin(P))(Ozn).

(49) Letabe areal numbeg be a subset o7, andwy, w4 be points ofE]. Suppos® = {q:
|g > a} andw; € Q andw, € Q and it is not true that there exists a real numbeuch that
W1 =T -W4 Or Wa = r -W1. Then there exist points,, ws of 7 such thaiv, € Q andws € Q
and L(wg,W2) C Qand L(wyp,wsz) C Q andL(ws, W) C Q.

(50) Leta be a real numbel be a subset of{, andwi, ws be points ofE}. SupposeQ =
R"\{q:]q| < a} andw; € Q andws € Q and it is not true that there exists a real number
such thatwv; =r-ws or wg = r -wy. Then there exist pointa, wz of £ such thatwv, € Q
andws € Q and £L(wq,wz) C Qand L(wz,w3) C Qand L(wsz,wa) C Q.

(52E| Every finite sequencé of elements o is an element ok ®"f and a point of£!"" .

(53) LetxbeanelementaR", f, gbe finite sequences of elementfyfandr be a real number.
Supposef = xandg =r -x. Then lenf =leng and for every natural numbéesuch that I< i
andi <lenf holdsg; =r - f.

(54) Letx be an element oR" and f be a finite sequence. Suppos¢ (0,...,0) andx = f.
N——

n
Then there exists a natural numbeuch that 1< i andi < nandf (i) # 0.

(55) Letxbe an element oR". Supposen > 2 andx # (0,...,0). Then it is not true that there
——

n
exists an elementof " and there exists a real numbresuch thayy =r-xorx=r-y.

(56) Letabe areal numbeR be a subset of7, andw;, w; be points ofE{. Supposen > 2
andQ = {q: |gq| > a} andw; € Q andw; € Q and there exists a real numbesuch that
W1 =T -W7 Or Wy = -wy. Then there exist pointsy, ws, wa, ws, We of Ef! such thawv, € Q
andws € Q andwy € Q andws € Q andwg € Q and L(wq,w2) C Q and L(wg,w3) C Q and
L(wsz,wg) C Qand.L(wg,Ws) C QandL(ws,wg) C QandL(wes,wy) C Q.

2 The proposition (51) has been removed.
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(57) Letabe areal numbeR be a subset of7, andw;, wy be points ofE7. Supposen > 2
andQ=2R"\{q:|q| < a} andw; € Q andw; € Q and there exists a real numbyesuch that
W1 =T -W7 Or Wy = -Wy. Then there exist pointsy, W, Wa, Ws, We of Ef such thawv, € Q
andws € Q andw, € Q andws € Q andwg € Q and L(w1,w,) C Q and L(w,w3) C Q and
L(wsz,wg) C Qand.L(ws,Ws) C QandL(ws,Wg) C Qand.L(ws,wy) C Q.

(58) For every real numbersuch than > 1 holds{q: |q| > a} # 0.

(59) For every real numberand for every subsét of £{ such than > 2 andP = {q: |q| > a}
holdsP is connected.

(60) For every real numbersuch than > 1 holds®"\ {q:|q| < a} # 0.

(61) For every real numbex and for every subsed® of £f such thain > 2 andP = X"\ {q:
|g| < a} holdsP is connected.

(62) Leta be a real numbem be a natural number, arfllbe a subset of£f. If n> 1 and
P = R"\ {qg;qranges over points ¢£}: |q| < a}, thenP is not Bounded.

(63) Leta be a real number ané be a subset of}. If P = {q;q ranges over points ot?:
V, (q=(r) A r>a)}, thenPis convex.

(64) Leta be a real number and be a subset oﬁ% If P={q;q ranges over points OE%:
V: (@=(r) A r<—a)}, thenPis convex.

(65) Letabe areal number anfd be a subset oETl SupposeP = {g; q ranges over points of
£+, (@=(r) A r>a)}. ThenP is connected.

(66) Letabe areal number anfd be a subset OETl SupposeP = {g; q ranges over points of
L\, (= ({r) A r < —a)}. ThenPis connected.

(67) LetW be a subset of?, a be a real number, arflbe a subset of}. Suppos&V = {q;q
ranges over points af}: \/, (q= (r) A r >a)} andP =W. ThenP is connected an is
not bounded.

(68) LetW be a subset of?, a be a real number, arfdlbe a subset of}. Suppos&V = {q;q
ranges over points al: \/, (q= (r) A r < —a)} andP =W. ThenP is connected and is
not bounded.

(69) LetW be a subset of", a be a real number, andl be a subset off. If n> 2 and
W = {q: |g| > a} andP =W, thenP is connected an@ is not bounded.

(70) LetW be a subset of", a be a real number, andl be a subset of{. If n> 2 and
W =2R"\{q:|g < a} andP =W, thenP is connected and is not bounded.

(71) LetP, P, be subsets of7, Q be a subset off, andW be a subset of". Supposd® =W
andP is connected and is not bounded anBy, = ComponenDown(P, Q%)) andW misses
Q. ThenP; is outside component @).

(72) LetA be a subset of", B be a non empty subset @", andC be a subset of"|B. If
A C BandA=C andC is bounded, theA is bounded.

(73) For every subsét of £{ such thatA is compact hold#\ is Bounded.
(74) For every subsét of £7 such that 1< n andA is Bounded hold#\° # 0.

(75) Letr be areal number. Then there exists a suBseft £" such thaB = {q: || <r} and
for every subsef of E" such thath = {q; : |g1| < r} holdsA is bounded.

(76) LetAbe asubset of7. Supposer > 2 andA is Bounded. Then there exists a sutBef
£7 such thaB is outside component @€ andB = UBDA.
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(77) For every real numberand for every subsé® of £7 such thaP = {q: |q| < a} holdsP is
convex.

(78) For every real numbex and for every subsé? of Z{ such that® = Ball(u,a) holdsP is
convex.

(79) For every real numberand for every subsét of Z7 such thaP = {q: |q| < a} holdsP is
connected.

In the sequeR denotes a subset @7 andP denotes a subset @f.
Next we state a number of propositions:

(80) Suppose # qandp € Ball(u,r) andq € Ball(u,r). Then there exists a mdpfrom I into
7 such thah is continuous anti(0) = p andh(1) = g and rngh C Ball(u,r).

(81) Letf be a map frond into £7. Supposef is continuous and (0) = py and f(1) = p2
andp € Ball(u,r) andp, € Ball(u,r). Then there exists a mapfrom I into £ such that is
continuous andh(0) = p; andh(1) = p and rnch C rng f UBall(u,r).

(82) Letf be amap froni into 7. Suppose is continuous and rmfC P and f(0) = p; and
f(1) = p2 andp € Ball(u,r) andpz € Ball(u,r) and Bal(u,r) C P. Then there exists a map
fy from Iinto 7 such thatf is continuous and rfy € P andf1(0) = p; andf1(1) = p.
(83) Letgivenp andP be a subset of}. Suppose that
(i) Risconnected and open, and
(i) P={d:9#p A dERA =V¢.map fromr into &0 (fis continuoush rmgf CR A f(0) =
pA L) =09}
ThenP is open.
(84) LetP be a subset off. Suppose that
(i) Risconnected and open,
(i) peRand
(i) P={a:d=p V Vt:map fromr into &0 (fis continuoush rngf CR A f(0)=p A f(1) =
a}

ThenP is open.

(85) LetRbe a subset of]. Supposep € RandP ={q:q=p V Vt.map froml into zn (fis
continuoush rngf CR A f(0O)=p A f(1)=q)}. ThenPC R
(86) LetRbe asubset off andp be a point of£{. Suppose that
(i) Risconnected and open,
(i) peRand
(i)  P={d:d=pV Vi:map romrino zn (fis continuous\ mgf CR A f(0)=p A f(1) =
)}
ThenRCP.

(87) LetRbe a subset o] andp, q be points of£{. SupposeR is connected and open and
p € Randg € Randp # q. Then there exists a mapfrom Iinto Z£{ such thatf is continuous
and rngf C Randf(0) = pandf(1) =q.

(88) For every subsek of Z and for every real numbersuch thatA = {q: |q| = a} holdsA®
is open andAis closed.

(89) For every non empty sub€ebf £} such thaB is open hold$E]) [B is locally connected.

(90) LetB be a non empty subset &, A be a subset of£], anda be a real number. If
A={q:|q| =a} andA° = B, then(£}) [B is locally connected.
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(91) For every magf from £ into R? such that for everg holds f (g) = |g| holds f is contin-
uous.

(92) There exists a map from ZP into R such that for every holds f(q) = |g| and f is
continuous.

Let X, Y be non empty 1-sorted structures, fdbe a map fronX into Y, and letx be a set. Let
us assume thatis a point ofX. The functormy f yields a point ofY and is defined as follows:

(Def. 10§ mf = f(x).

The following four propositions are true:

(93) Letgbe a map froni into £;. Suppose is continuous. Then there exists a miafrom I
into R* such that for every poirtof I holds f (t) = |g(t)| and f is continuous.

(94) Letg be a map froni into £{ anda be a real number. Supposgeis continuous and
|Tog| < aanda < |myg|. Then there exists a poistof I such thaimeg| = a.

(95) Ifq= (r), then|q| = r|.
(96) LetAbe asubset ofT anda be a real number. Suppose> 1 anda> 0 andA= {q:|q| =
a}. Then there exists a subdebf £ such thaB is inside component ok andB = BDDA.

2. BOUNDED AND UNBOUNDED DOMAINS OF RECTANGLES

In the sequeD denotes a non vertical non horizontal non empty compact subﬁ of
The following propositions are true:

(97) lenthe Go-board of SpStSBg= 2 and widththe Go-board of SpStdeqg= 2 and
(SpStSedp); = the Go-board of SpStS&ye (1,2) and (SpStSedp), = the Go-board
of SpStSed o (2,2) and (SpStSe®); = the Go-board of SpStSé&yo (2,1) and
(SpStSedp)s = the Go-board of SpStSé&xre (1,1) and (SpStSed)s = the Go-board of
SpStSedo (1,2).

(98) LeftComgSpStSedp) is non Bounded.
(99) LeftComgSpStSe®) C UBD £(SpStSe®).

(100) LetG be a topological space ard B, C be subsets 0&. Suppose\ is a component ofs
andB is a component os andC is connected and meetsC andB meetsC. ThenA =B.

(101) For every subséd of £2 such thatB is a component of L(SpStSed))© and B is not
Bounded hold8 = LeftComp(SpStSed).

(102) RightCompSpStSed) C BDD Z(SpStSecﬁ)) and RightComfSpStSed) is Bounded.
(103) LeftComgSpStSedp)=UBD E(SpStSecﬁ)) and RightComSpStSed) =BDD Z(SpStSe@).

(104) UBDL(SpStSe®) # 0 and UBDL(SpStSe®) is outside component of (SpStSe®)
and BDDL(SpStSe®) # 0 and BDDL(SpStSed) is inside component of (SpStSed).

3 The definition (Def. 9) has been removed.
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3. JORDAN PROPERTY ANDBOUNDARY PROPERTY
We now state several propositions:

(105) LetG be a non empty topological space ahte a subset d6. Supposeé\® # 0. ThenAis
boundary if and only if for every setand for every subsét of G such thak € Aandx € V
andV is open there exists a sub&bf G such thaB is a component of® andV meetsB.

(106) LetA be a subset oE% SupposeA® £ 0. ThenA is boundary and Jordan if and only if
there exist subsets;, A of £2 such tha\® = Ay UA; andA; missesh, andAq \ Ag = Az \ A
andA = A1\ A; and for all subset€;, C, of (Z%) IA® such thatC; = A; andC, = A, holds
C: is a component o(f£$) IA® andC; is a component o¢£%) [AC,

(107) For every poinp of £7 and for every subsdt of £7 such than > 1 andP = {p} holdsP
is boundary.

(108) For all pointg, g of £2 and for every such thatp; = g and—p, = ¢y andp =r -q holds
pp=0andp, =0andp= OE%.

(209) For all pointsy, gy of Z% holds £(qz,02) is boundary.

Let qi1, gz be points ofﬂ%. One can verify that(qs, g2) is boundary.
One can prove the following proposition

(110) For every finite sequendeof elements of£2 holds () is boundary.

Let f be a finite sequence of elementsZ#. Note thatZ( ) is boundary.
Next we state several propositions:

(111) For every poing; of £" and for all pointsp, g of 7 such thatp = e; andq € Ball(ey,r)
holds|p—q| <r and|g—p| <.

(112) Letabe areal number anglbe a point ofE%. Suppos@ > 0andp e E(SpStSe@). Then
there exists a poirg of £2 such thaty € UBD L(SpStSe®) and|p—q| < a.

(113) R°={0g)}.
(114) For every subsétof £{ such that is Bounded holds BDRA is Bounded.

(115) LetG be a non empty topological space aidB, C, D be subsets of. Suppose is a
component of5 andB is a component o& andC is a component o andAUB = the carrier
of G andC missesA. ThenC = B.

(116) For every subse& of Z% such thatA is Bounded and Jordan holds B[20s inside com-
ponent ofA.

(117) Letabe areal number anglbe a point off;%. Suppos@ > 0andp e Z(SpStSe@). Then
there exists a poirg of £2 such thaty € BDD L(SpStSe®) and|p—q| < a.

4. POINTS IN LEFTCOMP

In the sequef is a clockwise oriented non constant standard special circular sequence.
One can prove the following propositions:

(118) For every poinp of £2 such thatf; = Nmin(L(f)) and p; < W-bound £(f)) holdsp €
LeftComp(f).

(119) For every poinp of Z2 such thatf; = Nmin(L(f)) and p; > E-bound £(f)) holdsp e
LeftComp(f).
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(120) For every poinp of £2 such thatf; = Nmin(L(f)) and p2 < S-boundZ(f)) holdsp €

LeftComp(f).

(121) For every poinp of 2 such thatf; = Nmin(L(f)) and p2 > N-bound Z(f)) holdsp €

(1]
(2]

(3]

4

(3]

(7]

8l

[

[20]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

LeftComp(f).
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