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The articles [38], [9], [45], [32], [46], [7], [8], [3], [40], [18], [2], [1], [34], [47], [13], [20], [6], [31],
[33], [17], [29], [36], [15], [4], [10], [44], [41], [35], [5], [21], [30], [37], [24], [11], [14], [26], [12],
[43], [42], [16], [19], [22], [27], [23], [28], [39], and [25] provide the notation and terminology for
this paper.

1. DEFINITIONS OFBOUNDED DOMAIN AND UNBOUNDED DOMAIN

We use the following convention:m, n are natural numbers,r, s are real numbers, andx, y are sets.
We now state several propositions:

(1) If r ≤ 0, then|r|=−r.

(2) For alln, msuch thatn≤mandm≤ n+2 holdsm= n or m= n+1 orm= n+2.

(3) For all n, m such thatn≤ m andm≤ n+ 3 holdsm = n or m = n+ 1 or m = n+ 2 or
m= n+3.

(4) For all n, m such thatn≤ m andm≤ n+ 4 holdsm = n or m = n+ 1 or m = n+ 2 or
m= n+3 orm= n+4.

(5) For all real numbersa, b such thata≥ 0 andb≥ 0 holdsa+b≥ 0.

(6) For all real numbersa, b such thata > 0 andb≥ 0 holdsa+b > 0.

(7) For every finite sequencef such that rngf = {x,y} and lenf = 2 holds f (1) = x and
f (2) = y or f (1) = y and f (2) = x.

(8) Let f be an increasing finite sequence of elements ofR. If rng f = {r,s} and lenf = 2 and
r ≤ s, then f (1) = r and f (2) = s.

1 c© Association of Mizar Users
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In the sequelp, p1, p2, p3, q, q1, q2 denote points ofEn
T.

One can prove the following propositions:

(9) (p1 + p2)− p3 = (p1− p3)+ p2.

(10) ||q||= |q|.

(11) ||q1|− |q2|| ≤ |q1−q2|.

(12) ||[r]||= |r|.

(13) q−0En
T

= q and 0En
T
−q =−q.

(14) For every subsetP of En
T such thatP is convex holdsP is connected.

(15) LetG be a non empty topological space,P be a subset ofG, A be a subset ofG, andQ be a
subset ofG�A. If P = Q andP is connected, thenQ is connected.

Let us considern and letA be a subset ofEn
T. We say thatA is Bounded if and only if:

(Def. 2)1 There exists a subsetC of En such thatC = A andC is bounded.

The following proposition is true

(16) For all subsetsA, B of En
T such thatB is Bounded andA⊆ B holdsA is Bounded.

Let us considern, let A be a subset ofEn
T, and letB be a subset ofEn

T. We say thatB is inside
component ofA if and only if:

(Def. 3) B is a component ofAc and Bounded.

Let M be a non empty metric structure. Observe that there exists a subset ofM which is bounded.
One can prove the following proposition

(17) LetA be a subset ofEn
T andB be a subset ofEn

T. ThenB is inside component ofA if and
only if there exists a subsetC of (En

T)�Ac such thatC = B andC is a component of(En
T)�Ac

and a bounded subset ofEn.

Let us considern, let A be a subset ofEn
T, and letB be a subset ofEn

T. We say thatB is outside
component ofA if and only if:

(Def. 4) B is a component ofAc andB is not Bounded.

The following propositions are true:

(18) LetA be a subset ofEn
T andB be a subset ofEn

T. ThenB is outside component ofA if and
only if there exists a subsetC of (En

T)�Ac such thatC = B andC is a component of(En
T)�Ac

andC is not a bounded subset ofEn.

(19) For all subsetsA, B of En
T such thatB is inside component ofA holdsB⊆ Ac.

(20) For all subsetsA, B of En
T such thatB is outside component ofA holdsB⊆ Ac.

Let us considern and letA be a subset ofEn
T. The functor BDDA yielding a subset ofEn

T is
defined by:

(Def. 5) BDDA =
⋃
{B;B ranges over subsets ofEn

T: B is inside component ofA}.

Let us considern and letA be a subset ofEn
T. The functor UBDA yielding a subset ofEn

T is
defined as follows:

(Def. 6) UBDA =
⋃
{B;B ranges over subsets ofEn

T: B is outside component ofA}.
1 The definition (Def. 1) has been removed.
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The following two propositions are true:

(21) ΩEn
T

is convex.

(22) ΩEn
T

is connected.

Let us considern. Observe thatΩEn
T

is connected.
One can prove the following propositions:

(23) ΩEn
T

is a component ofEn
T.

(24) For every subsetA of En
T holds BDDA is a union of components of(En

T)�Ac.

(25) For every subsetA of En
T holds UBDA is a union of components of(En

T)�Ac.

(26) For every subsetA of En
T and for every subsetB of En

T such thatB is inside component of
A holdsB⊆ BDDA.

(27) For every subsetA of En
T and for every subsetB of En

T such thatB is outside component of
A holdsB⊆ UBDA.

(28) For every subsetA of En
T holds BDDA misses UBDA.

(29) For every subsetA of En
T holds BDDA⊆ Ac.

(30) For every subsetA of En
T holds UBDA⊆ Ac.

(31) For every subsetA of En
T holds BDDA∪UBDA = Ac.

In the sequelu is a point ofEn.
Next we state two propositions:

(32) Let G be a non empty topological space,w1, w2, w3 be points ofG, andh1, h2 be maps
from I into G. Supposeh1 is continuous andw1 = h1(0) andw2 = h1(1) andh2 is continuous
andw2 = h2(0) andw3 = h2(1). Then there exists a maph3 from I into G such thath3 is
continuous andw1 = h3(0) andw3 = h3(1) and rngh3 ⊆ rngh1∪ rngh2.

(33) For every subsetP of En
T such thatP = R n holdsP is connected.

Let us considern. The functor 1∗n yields a finite sequence of elements ofR and is defined by:

(Def. 7) 1∗n = n 7→ (1 qua real number).

Let us considern. Then 1∗n is an element ofR n.
Let us considern. The functor 1.REALn yielding a point ofEn

T is defined as follows:

(Def. 8) 1.REALn = 1∗n.

One can prove the following propositions:

(34) |1∗n|= n 7→ (1 qua real number).

(35) |1∗n|=
√

n.

(36) 1.REAL1 = 〈(1 qua real number)〉.

(37) |1.REALn|=
√

n.

(38) If 1≤ n, then 1≤ |1.REALn|.

(39) For every subsetW of En such thatn≥ 1 andW = R n holdsW is not bounded.

(40) LetA be a subset ofEn
T. ThenA is Bounded if and only if there exists a real numberr such

that for every pointq of En
T such thatq∈ A holds|q|< r.
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(41) If n≥ 1, thenΩEn
T

is not Bounded.

(42) If n≥ 1, then UBD/0En
T

= R n.

(43) Letw1, w2, w3 be points ofEn
T, P be a non empty subset ofEn

T, andh1, h2 be maps fromI
into (En

T)�P. Supposeh1 is continuous andw1 = h1(0) andw2 = h1(1) andh2 is continuous
andw2 = h2(0) andw3 = h2(1). Then there exists a maph3 from I into (En

T)�P such thath3

is continuous andw1 = h3(0) andw3 = h3(1).

(44) LetP be a subset ofEn
T andw1, w2, w3 be points ofEn

T. Supposew1 ∈ P andw2 ∈ P and
w3 ∈ P andL(w1,w2)⊆ P andL(w2,w3)⊆ P. Then there exists a maph from I into (En

T)�P
such thath is continuous andw1 = h(0) andw3 = h(1).

(45) LetP be a subset ofEn
T andw1, w2, w3, w4 be points ofEn

T. Supposew1 ∈ P andw2 ∈ P
andw3 ∈ P andw4 ∈ P andL(w1,w2)⊆ P andL(w2,w3)⊆ P andL(w3,w4)⊆ P. Then there
exists a maph from I into (En

T)�P such thath is continuous andw1 = h(0) andw4 = h(1).

(46) LetP be a subset ofEn
T andw1, w2, w3, w4, w5, w6, w7 be points ofEn

T. Supposew1 ∈ P
andw2 ∈P andw3 ∈P andw4 ∈P andw5 ∈P andw6 ∈P andw7 ∈P andL(w1,w2)⊆P and
L(w2,w3)⊆ P andL(w3,w4)⊆ P andL(w4,w5)⊆ P andL(w5,w6)⊆ P andL(w6,w7)⊆ P.
Then there exists a maph from I into (En

T)�P such thath is continuous andw1 = h(0) and
w7 = h(1).

(47) For all pointsw1, w2 of En
T such that it is not true that there exists a real numberr such that

w1 = r ·w2 or w2 = r ·w1 holds 0En
T

/∈ L(w1,w2).

(48) Let w1, w2 be points ofEn
T andP be a subset of(En)top. SupposeP = L(w1,w2) and

0En
T

/∈ L(w1,w2). Then there exists a pointw0 of En
T such thatw0 ∈ L(w1,w2) and|w0| > 0

and|w0|= (distmin(P))(0En
T
).

(49) Leta be a real number,Q be a subset ofEn
T, andw1, w4 be points ofEn

T. SupposeQ = {q :
|q| > a} andw1 ∈ Q andw4 ∈ Q and it is not true that there exists a real numberr such that
w1 = r ·w4 or w4 = r ·w1. Then there exist pointsw2, w3 of En

T such thatw2 ∈Q andw3 ∈Q
andL(w1,w2)⊆Q andL(w2,w3)⊆Q andL(w3,w4)⊆Q.

(50) Let a be a real number,Q be a subset ofEn
T, andw1, w4 be points ofEn

T. SupposeQ =
R n \{q : |q| < a} andw1 ∈ Q andw4 ∈ Q and it is not true that there exists a real numberr
such thatw1 = r ·w4 or w4 = r ·w1. Then there exist pointsw2, w3 of En

T such thatw2 ∈ Q
andw3 ∈Q andL(w1,w2)⊆Q andL(w2,w3)⊆Q andL(w3,w4)⊆Q.

(52)2 Every finite sequencef of elements ofR is an element ofR len f and a point ofE len f
T .

(53) Letx be an element ofR n, f , g be finite sequences of elements ofR, andr be a real number.
Supposef = x andg = r ·x. Then lenf = leng and for every natural numberi such that 1≤ i
andi ≤ len f holdsgi = r · fi .

(54) Letx be an element ofR n and f be a finite sequence. Supposex 6= 〈0, . . . ,0︸ ︷︷ ︸
n

〉 andx = f .

Then there exists a natural numberi such that 1≤ i andi ≤ n and f (i) 6= 0.

(55) Letx be an element ofR n. Supposen≥ 2 andx 6= 〈0, . . . ,0︸ ︷︷ ︸
n

〉. Then it is not true that there

exists an elementy of R n and there exists a real numberr such thaty = r ·x or x = r ·y.

(56) Leta be a real number,Q be a subset ofEn
T, andw1, w7 be points ofEn

T. Supposen≥ 2
andQ = {q : |q| > a} andw1 ∈ Q andw7 ∈ Q and there exists a real numberr such that
w1 = r ·w7 or w7 = r ·w1. Then there exist pointsw2, w3, w4, w5, w6 of En

T such thatw2 ∈Q
andw3 ∈ Q andw4 ∈ Q andw5 ∈ Q andw6 ∈ Q andL(w1,w2)⊆ Q andL(w2,w3)⊆ Q and
L(w3,w4)⊆Q andL(w4,w5)⊆Q andL(w5,w6)⊆Q andL(w6,w7)⊆Q.

2 The proposition (51) has been removed.
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(57) Leta be a real number,Q be a subset ofEn
T, andw1, w7 be points ofEn

T. Supposen≥ 2
andQ = R n\{q : |q|< a} andw1 ∈Q andw7 ∈Q and there exists a real numberr such that
w1 = r ·w7 or w7 = r ·w1. Then there exist pointsw2, w3, w4, w5, w6 of En

T such thatw2 ∈Q
andw3 ∈ Q andw4 ∈ Q andw5 ∈ Q andw6 ∈ Q andL(w1,w2)⊆ Q andL(w2,w3)⊆ Q and
L(w3,w4)⊆Q andL(w4,w5)⊆Q andL(w5,w6)⊆Q andL(w6,w7)⊆Q.

(58) For every real numbera such thatn≥ 1 holds{q : |q|> a} 6= /0.

(59) For every real numbera and for every subsetP of En
T such thatn≥ 2 andP = {q : |q|> a}

holdsP is connected.

(60) For every real numbera such thatn≥ 1 holdsR n\{q : |q|< a} 6= /0.

(61) For every real numbera and for every subsetP of En
T such thatn≥ 2 andP = R n \ {q :

|q|< a} holdsP is connected.

(62) Let a be a real number,n be a natural number, andP be a subset ofEn
T. If n ≥ 1 and

P = R n\{q;q ranges over points ofEn
T: |q|< a}, thenP is not Bounded.

(63) Let a be a real number andP be a subset ofE1
T. If P = {q;q ranges over points ofE1

T:∨
r (q = 〈r〉 ∧ r > a)}, thenP is convex.

(64) Let a be a real number andP be a subset ofE1
T. If P = {q;q ranges over points ofE1

T:∨
r (q = 〈r〉 ∧ r <−a)}, thenP is convex.

(65) Leta be a real number andP be a subset ofE1
T. SupposeP = {q;q ranges over points of

E1
T:

∨
r (q = 〈r〉 ∧ r > a)}. ThenP is connected.

(66) Leta be a real number andP be a subset ofE1
T. SupposeP = {q;q ranges over points of

E1
T:

∨
r (q = 〈r〉 ∧ r <−a)}. ThenP is connected.

(67) LetW be a subset ofE1, a be a real number, andP be a subset ofE1
T. SupposeW = {q;q

ranges over points ofE1
T:

∨
r (q = 〈r〉 ∧ r > a)} andP = W. ThenP is connected andW is

not bounded.

(68) LetW be a subset ofE1, a be a real number, andP be a subset ofE1
T. SupposeW = {q;q

ranges over points ofE1
T:

∨
r (q = 〈r〉 ∧ r <−a)} andP = W. ThenP is connected andW is

not bounded.

(69) Let W be a subset ofEn, a be a real number, andP be a subset ofEn
T. If n ≥ 2 and

W = {q : |q|> a} andP = W, thenP is connected andW is not bounded.

(70) Let W be a subset ofEn, a be a real number, andP be a subset ofEn
T. If n ≥ 2 and

W = R n\{q : |q|< a} andP = W, thenP is connected andW is not bounded.

(71) LetP, P1 be subsets ofEn
T, Q be a subset ofEn

T, andW be a subset ofEn. SupposeP = W
andP is connected andW is not bounded andP1 = Component(Down(P,Qc)) andW misses
Q. ThenP1 is outside component ofQ.

(72) Let A be a subset ofEn, B be a non empty subset ofEn, andC be a subset ofEn�B. If
A⊆ B andA = C andC is bounded, thenA is bounded.

(73) For every subsetA of En
T such thatA is compact holdsA is Bounded.

(74) For every subsetA of En
T such that 1≤ n andA is Bounded holdsAc 6= /0.

(75) Let r be a real number. Then there exists a subsetB of En such thatB = {q : |q|< r} and
for every subsetA of En such thatA = {q1 : |q1|< r} holdsA is bounded.

(76) LetA be a subset ofEn
T. Supposen≥ 2 andA is Bounded. Then there exists a subsetB of

En
T such thatB is outside component ofA andB = UBDA.
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(77) For every real numbera and for every subsetP of En
T such thatP = {q : |q|< a} holdsP is

convex.

(78) For every real numbera and for every subsetP of En
T such thatP = Ball(u,a) holdsP is

convex.

(79) For every real numbera and for every subsetP of En
T such thatP = {q : |q|< a} holdsP is

connected.

In the sequelRdenotes a subset ofEn
T andP denotes a subset ofEn

T.
Next we state a number of propositions:

(80) Supposep 6= q andp∈ Ball(u, r) andq∈ Ball(u, r). Then there exists a maph from I into
En

T such thath is continuous andh(0) = p andh(1) = q and rngh⊆ Ball(u, r).

(81) Let f be a map fromI into En
T. Supposef is continuous andf (0) = p1 and f (1) = p2

andp∈ Ball(u, r) andp2 ∈ Ball(u, r). Then there exists a maph from I into En
T such thath is

continuous andh(0) = p1 andh(1) = p and rngh⊆ rng f ∪Ball(u, r).

(82) Let f be a map fromI into En
T. Supposef is continuous and rngf ⊆ P and f (0) = p1 and

f (1) = p2 andp∈ Ball(u, r) andp2 ∈ Ball(u, r) and Ball(u, r) ⊆ P. Then there exists a map
f1 from I into En

T such thatf1 is continuous and rngf1 ⊆ P and f1(0) = p1 and f1(1) = p.

(83) Let givenp andP be a subset ofEn
T. Suppose that

(i) R is connected and open, and

(ii) P = {q : q 6= p ∧ q∈ R ∧ ¬
∨

f :map fromI into En
T

( f is continuous∧ rng f ⊆ R ∧ f (0) =
p ∧ f (1) = q)}.
ThenP is open.

(84) LetP be a subset ofEn
T. Suppose that

(i) R is connected and open,

(ii) p∈ R, and

(iii) P = {q : q = p ∨
∨

f :map fromI into En
T

( f is continuous∧ rng f ⊆ R ∧ f (0) = p ∧ f (1) =
q)}.
ThenP is open.

(85) Let R be a subset ofEn
T. Supposep ∈ R andP = {q : q = p ∨

∨
f :map fromI into En

T
( f is

continuous∧ rng f ⊆ R ∧ f (0) = p ∧ f (1) = q)}. ThenP⊆ R.

(86) LetRbe a subset ofEn
T andp be a point ofEn

T. Suppose that

(i) R is connected and open,

(ii) p∈ R, and

(iii) P = {q : q = p ∨
∨

f :map fromI into En
T

( f is continuous∧ rng f ⊆ R ∧ f (0) = p ∧ f (1) =
q)}.
ThenR⊆ P.

(87) LetR be a subset ofEn
T and p, q be points ofEn

T. SupposeR is connected and open and
p∈Randq∈Randp 6= q. Then there exists a mapf from I into En

T such thatf is continuous
and rngf ⊆ Rand f (0) = p and f (1) = q.

(88) For every subsetA of En
T and for every real numbera such thatA = {q : |q|= a} holdsAc

is open andA is closed.

(89) For every non empty subsetB of En
T such thatB is open holds(En

T)�B is locally connected.

(90) Let B be a non empty subset ofEn
T, A be a subset ofEn

T, anda be a real number. If
A = {q : |q|= a} andAc = B, then(En

T)�B is locally connected.
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(91) For every mapf from En
T into R1 such that for everyq holds f (q) = |q| holds f is contin-

uous.

(92) There exists a mapf from En
T into R1 such that for everyq holds f (q) = |q| and f is

continuous.

Let X, Y be non empty 1-sorted structures, letf be a map fromX into Y, and letx be a set. Let
us assume thatx is a point ofX. The functorπx f yields a point ofY and is defined as follows:

(Def. 10)3 πx f = f (x).

The following four propositions are true:

(93) Letg be a map fromI into En
T. Supposeg is continuous. Then there exists a mapf from I

into R1 such that for every pointt of I holds f (t) = |g(t)| and f is continuous.

(94) Let g be a map fromI into En
T and a be a real number. Supposeg is continuous and

|π0g| ≤ a anda≤ |π1g|. Then there exists a points of I such that|πsg|= a.

(95) If q = 〈r〉, then|q|= |r|.

(96) LetA be a subset ofEn
T anda be a real number. Supposen≥ 1 anda> 0 andA= {q : |q|=

a}. Then there exists a subsetB of En
T such thatB is inside component ofA andB = BDDA.

2. BOUNDED AND UNBOUNDED DOMAINS OF RECTANGLES

In the sequelD denotes a non vertical non horizontal non empty compact subset ofE2
T.

The following propositions are true:

(97) lenthe Go-board of SpStSeqD = 2 and widththe Go-board of SpStSeqD = 2 and
(SpStSeqD)1 = the Go-board of SpStSeqD ◦ (1,2) and (SpStSeqD)2 = the Go-board
of SpStSeqD ◦ (2,2) and (SpStSeqD)3 = the Go-board of SpStSeqD ◦ (2,1) and
(SpStSeqD)4 = the Go-board of SpStSeqD ◦ (1,1) and (SpStSeqD)5 = the Go-board of
SpStSeqD◦ (1,2).

(98) LeftComp(SpStSeqD) is non Bounded.

(99) LeftComp(SpStSeqD)⊆ UBD L̃(SpStSeqD).

(100) LetG be a topological space andA, B, C be subsets ofG. SupposeA is a component ofG
andB is a component ofG andC is connected andA meetsC andB meetsC. ThenA = B.

(101) For every subsetB of E2
T such thatB is a component of(L̃(SpStSeqD))c andB is not

Bounded holdsB = LeftComp(SpStSeqD).

(102) RightComp(SpStSeqD)⊆ BDD L̃(SpStSeqD) and RightComp(SpStSeqD) is Bounded.

(103) LeftComp(SpStSeqD)= UBD L̃(SpStSeqD) and RightComp(SpStSeqD)= BDD L̃(SpStSeqD).

(104) UBDL̃(SpStSeqD) 6= /0 and UBDL̃(SpStSeqD) is outside component of̃L(SpStSeqD)
and BDDL̃(SpStSeqD) 6= /0 and BDDL̃(SpStSeqD) is inside component of̃L(SpStSeqD).

3 The definition (Def. 9) has been removed.
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3. JORDAN PROPERTY ANDBOUNDARY PROPERTY

We now state several propositions:

(105) LetG be a non empty topological space andA be a subset ofG. SupposeAc 6= /0. ThenA is
boundary if and only if for every setx and for every subsetV of G such thatx∈ A andx∈V
andV is open there exists a subsetB of G such thatB is a component ofAc andV meetsB.

(106) LetA be a subset ofE2
T. SupposeAc 6= /0. ThenA is boundary and Jordan if and only if

there exist subsetsA1, A2 of E2
T such thatAc = A1∪A2 andA1 missesA2 andA1\A1 = A2\A2

andA = A1 \A1 and for all subsetsC1, C2 of (E2
T)�Ac such thatC1 = A1 andC2 = A2 holds

C1 is a component of(E2
T)�Ac andC2 is a component of(E2

T)�Ac.

(107) For every pointp of En
T and for every subsetP of En

T such thatn≥ 1 andP = {p} holdsP
is boundary.

(108) For all pointsp, q of E2
T and for everyr such thatp1 = q2 and−p2 = q1 andp= r ·q holds

p1 = 0 andp2 = 0 andp = 0E2
T
.

(109) For all pointsq1, q2 of E2
T holdsL(q1,q2) is boundary.

Let q1, q2 be points ofE2
T. One can verify thatL(q1,q2) is boundary.

One can prove the following proposition

(110) For every finite sequencef of elements ofE2
T holdsL̃( f ) is boundary.

Let f be a finite sequence of elements ofE2
T. Note thatL̃( f ) is boundary.

Next we state several propositions:

(111) For every pointe1 of En and for all pointsp, q of En
T such thatp = e1 andq∈ Ball(e1, r)

holds|p−q|< r and|q− p|< r.

(112) Leta be a real number andp be a point ofE2
T. Supposea> 0 andp∈ L̃(SpStSeqD). Then

there exists a pointq of E2
T such thatq∈ UBD L̃(SpStSeqD) and|p−q|< a.

(113) R 0 = {0E0
T
}.

(114) For every subsetA of En
T such thatA is Bounded holds BDDA is Bounded.

(115) LetG be a non empty topological space andA, B, C, D be subsets ofG. SupposeA is a
component ofG andB is a component ofG andC is a component ofG andA∪B= the carrier
of G andC missesA. ThenC = B.

(116) For every subsetA of E2
T such thatA is Bounded and Jordan holds BDDA is inside com-

ponent ofA.

(117) Leta be a real number andp be a point ofE2
T. Supposea> 0 andp∈ L̃(SpStSeqD). Then

there exists a pointq of E2
T such thatq∈ BDD L̃(SpStSeqD) and|p−q|< a.

4. POINTS IN LEFTCOMP

In the sequelf is a clockwise oriented non constant standard special circular sequence.
One can prove the following propositions:

(118) For every pointp of E2
T such thatf1 = Nmin(L̃( f )) and p1 < W-bound(L̃( f )) holds p∈

LeftComp( f ).

(119) For every pointp of E2
T such thatf1 = Nmin(L̃( f )) and p1 > E-bound(L̃( f )) holds p ∈

LeftComp( f ).



BOUNDED DOMAINS AND UNBOUNDED DOMAINS 9

(120) For every pointp of E2
T such thatf1 = Nmin(L̃( f )) and p2 < S-bound(L̃( f )) holds p ∈

LeftComp( f ).

(121) For every pointp of E2
T such thatf1 = Nmin(L̃( f )) and p2 > N-bound(L̃( f )) holds p ∈

LeftComp( f ).
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