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Summary. In this paper we introduce the notion of general position. We also show
some auxiliary theorems for proving Jordan curve theorem. The following main theorems are
proved:

1. End points of a polygon are in the same component of a complement of another polygon
if number of common points of these polygons is even;

2. Two points of polygorL are in the same component of a complement of polyldaif
two points of polygorM are in the same component of polygon

MML Identifier: JORDAN12.

WWW: http://mizar.org/JFM/Volld/jordanl2.html

The articles|[22],[[25],[[19],[12],[[17],[[21],[[15], [26] /1] [17],[[5],[[3],.[24],[110] [ 14] [[20],[[18],
[81, 191, [13], [14], [11], [12], [16], [23], and[[6] provide the notation and terminology for this paper.

1. PRELIMINARIES

We adopt the following convention; j, k, n denote natural numbera, b, c, x denote sets, and
denotes a real number.
One can prove the following propositions:

(1) Mil<i,thenO<i—"1.
(3] 1isodd.

(4) For every finite sequendeof elements of£f and for every such that K i andi+1 <lenf
holdsfi € rngf andfiy1 € rngf.

One can verify that every finite sequence of elementsivhich is s.n.c. is also s.c.c..
One can prove the following two propositions:

(5) Let f, g be finite sequences of eIements@f. If f ~~ gis unfolded and s.c.c. and
leng > 2, thenf is unfolded and s.n.c..

(6) For all finite sequenceg, gz of elements ofE2 hoIdsZ(gl) C L(g1 ~02).

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
1 The proposition (2) has been removed.
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2. THE NOTION OF GENERAL POSITION AND I TS PROPERTIES

Let us considen and letfy, f> be finite sequences of elements#f. We say thatf; is in general
position wrt f, if and only if:

(Def. 1) L(f;) misses mds and for everyi such that 1< i andi < lenf, holds £( 1) N £(f,i) is
trivial.

Let us considen and letfy, f, be finite sequences of elements&ff. We say thatf, and f, are
in general position if and only if:

(Def. 2) fyisin general position wrf; and f; is in general position wrf;.

Let us note that the predicafe and f, are in general position is symmetric.
We now state two propositions:

(7) Letfy, fz be finite sequences of eIementﬁﬁ. Supposef; and f; are in general position.
Let f be a finite sequence of elementsfaﬁ. If f=fy]Sed, thenf, andf are in general
position.

(8) Let fq, f2, g1, g2 be finite sequences of elements®}. Supposef; ~ f, andgy ~ g2
are in general position. Thefa ~~ f, andg; are in general position.

In the sequef, g denote finite sequences of element&gf
One can prove the following propositions:

(9) Forallk, f, gsuchthat I< kandk+1 <leng andf andg are in general position holds
g(k) € (£(f))" andg(k+1) € (L(f))".

(10) Letfs, f, be finite sequences of elementskf. Supposed; and f, are in general position.
Letgiveni, j. If1 <iandi+1<lenf;and 1< jandj+1<lenfy, thenL(f1,i)NL(f2, )
is trivial.

(11) Forallf,gholds{L(f,i):1<i Ai+1<lenf}lm{L(g,j):1<] A j+1<leng}is
finite.

(12) For allf, g such thatf andg are in general position hoIdE(f) mZ(g) is finite.

(13) For allf, gsuch thatf andg are in general position and for evek;holdsZ(f) N £(g,k)
is finite.

3. PROPERTIES OFBEING IN THE SAME COMPONENT OF ACOMPLEMENT OF APOLYGON

We use the following conventiorf. denotes a non constant standard special circular sequence and

P, P1, P2, g denote points of2.
One can prove the following propositions:

(14) Forallf, p1, p2 such thatZ(ps, p2) missesZ(f) there exists a subs€tof Z% such thatC
is a component of£(f))¢ andp; € Candp; € C.

(15) There exists a substof £2 such thaC is a component of L(f))¢ andae C andb €
C if and only if a € RightComg f) andb € RightComgf) or a € LeftComp(f) andb e
LeftComp(f).

(16) ac (L(f))® andb e (L(f))¢ and it is not true that there exists a subSetf 2 such

thatC is a component of Z(f))¢ anda € C andb € C if and only if a € LeftComp(f) and
b € RightComg f) or a € RightCom f) andb € LeftComp(f).
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(17) Letgivenf, a, b, c. Suppose that

(i) there exists a subs€tof £2 such thaC is a component of£(f))®andac CandbeC,
and

(i) there exists a subs& of 2 such thaC is a component ofL(f))® andb e C andc € C.
Then there exists a subsebf £2 such thaC is a component of£(f))¢andac CandceC.

(18) Letgivenf, a, b, c. Suppose that
i) ae(Z(f)"
(i) be(L(f)",

(i) ce(L(f))5

(iv) itis not true that there exists a sub&eof £2 such thaC is a component ofL(f))® and
acCandbeC, and

(v) itis not true that there exists a sub§etf £2 such thaC is a component ofL(f))® and
beCandceC.

Then there exists a subsebf £2 such thaC is a component of£(f))¢andac CandceC.

4. CeLLS ARE CONVEX

In the sequeG denotes a Go-board.
We now state several propositions:

(19) Ifi <lenG, then vstrigG,i) is convex.

(20) If j <widthG, then hstridG, j) is convex.

(21) Ifi <lenGandj <widthG, then cel(G,i, ) is convex.

(22) Forallf, ksuch that I< kandk+ 1 < lenf holds leftcel( f,k) is convex.

(23) For all f, k such that I< k andk+ 1 < lenf holds leftcell( f,k,the Go-board off) is

convex and rightell(f,k, the Go-board of) is convex.

5. PROPERTIES OFPOINTS LYING ON THE SAME LINE
One can prove the following propositions:

(24) Let givenpy, po2, f andr be a point of‘};%. Suppose € L(p1, p2) and there existg
such thatZ () N L(p1, p2) = {x} andr ¢ L(f). ThenL(f) missesL(py,r) or L(f) misses
L(r7 p2)

(25) For all pointsp, g, r, sof 2 such thatZ(p, q) is vertical and.(r, s) is vertical andZ(p, q)
meetsL(r,s) holdsp; =ry.

(26) For allp, p1, p2 such thatp ¢ £(p1, p2) and(p1)2 = (p2)2 and (p2)2 = p2 holds p; €
L(p, p2) Or p2 € L(p, p1).

(27) For allp, p1, p2 such thatp ¢ £(p1,p2) and(p1)1 = (p2)1 and(p2)1 = p1 holds p; €
L(p,pz) Or p2 € L(P, P1)-

(28) If p# prandp# p2andp € L(p1, p2), thenpy ¢ L(p, p2).

(29) Let givenp, p1, P2, 9. Suppose] ¢ L(p1, p2) andp € L(p1,p2) andp # p; andp # p2
and(p1)1 = (p2)1 and(pz)1 = 01 or (p1)2 = (P2)2 and (p2)2 = 2. Thenpy € £(q, p) or
P2 € L(q, p).

(30) Letps, p2, P3, Pa, p be points of£2. Supposépr)1 = (p2)1 and(ps)1 = (Pa)1 Or (P1)2 =
(p2)2 and(ps)2 = (Pa)2 but L(p1, p2) N L(ps, pa) = {p}. Thenp=p1 or p=pz or p= ps.
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6. THE POSITION OF THEPOINTS OF APOLYGON WITH RESPECT TOANOTHER POLYGON

Next we state several propositions:

(31) Letgivenp, py, P2, f. SupposeL(f) N L(p1, p2) = {p}. Letr be a point ofE2. Suppose

that
() r¢L(pLp2),
(i) p1¢ L(F),
(i) p2¢ L(F),

(V) (p1)1=(Pz2)1and(p1)1 =ryor (p1)2 = (p2)2 and(p1)z =rz,

(v) there exists$ such that I< i andi+1 < lenf andr € right_cell(f,i,the Go-board off) or
r € left_cell(f,i,the Go-board off) andp € L(f,i), and

(vi) r¢L(f).
Then

(vii) there exists a subs€tof £2 such thaC is a component ofL(f))®andr € Candp; €C,
or

(viii)  there exists a subs& of £2 such thaC is a component of£(f))¢andr € Candp, €C.

(32) Let givenf, p1, p2, p- SupposeZ(f) N L(p1, p2) = {p}. Let ry, ro be points of E2.

Suppose that
() puéL(F),
(i) P2 L(1),

@ity (p1)1=(p2)1and(p1)1 = (r1)1 and(r1)1 = (rz)1 or (p1)2 = (P2)2 and(pa)2 = (r1)2 and
(r1)2=(r2)2,

(iv) there exists such that K i andi+1<lenf andr; € left_cell(f,i,the Go-board of) and
rp € rightcell(f,i,the Go-board of) andp € L(f,i),

() ri¢ L(f),and

(Vi) ra¢ L(f).
Then it is not true that there exists a subSesf Z2 such thatC is a component of L(f))®
andp; e Candpz € C.

(33) Letgivenp, f, p1, p2. SupposeL(f)NL(py, p2) = {p} and(p1)1 = (P2)1 Of (p1)2 = (P2)2
andpy ¢ L(f) andpy ¢ L(f) and rngf missesL(py, p2). Then it is not true that there exists
a subse€ of £2 such thaC is a component of £(f))® andp; € C andp, € C.

(34) Letf be anon constant standard special circular sequenaglzand special finite sequence
of elements off£2. Supposef andg are in general position. Let givéa Suppose K k and
k41 < leng. Then L(f)NL(g,k) is an even natural number if and only if there exists a
subseC of £2 such thaC is a component of £(f))¢ andg(k) € C andg(k+1) € C.

(85) Letfy, fo, g1 be special finite sequences of elementiéf Suppose that

(i) f1~ fyisanon constant standard special circular sequence,
(i)  fy ~ fy andg; are in general position,
(i) leng;s >2,and
(iv) g1 isunfolded and s.n.c..

Then £(f; ~ f2) N L(g1) is an even natural number if and only if there exists a subs#t
£2 such thaC is a component of L( f; ~~ f2))¢ andgs (1) € C andg; (leng;) € C.
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(36) Letfs, 2, g1, g2 be special finite sequences of element&4f Suppose that
(i) f,~ fyisanon constant standard special circular sequence,
(i) 01 ~ gz is a non constant standard special circular sequence,
(i)  L(f1) missesL(gy),
(iv) L(f) missesL(g1), and
(v) f1~~ fpandg; ~ gz are in general position.
Let p1, p2, 01, G2 be points on%. Suppose that; (1) = p; andfs(lenf;) = pp andgi (1) = g1
andg (leng) = g2 and(f1)ienf, = (f2)1 and(g1)ieng, = (92)1 andpy € L(f1) N L(f,) and

1 € £(g1) N £(g2) and there exists a subs2bf 2 such thaC is a component of £ ( f; ~
~ f2))¢andg; € C andg € C. Then there exists a subsebf E% such thaC is a component

of (£(g1 ~ gp))¢ andp; € C andp; € C.
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