# Scalar Multiple of Riemann Definite Integral

Noboru Endou Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

**Summary.** The goal of this article is to prove a scalar multiplicity of Riemann definite integral. Therefore, we defined a scalar product to the subset of real space, and we proved some relating lemmas. At last, we proved a scalar multiplicity of Riemann definite integral. As a result, a linearity of Riemann definite integral was proven by unifying the previous article [11].

MML Identifier: INTEGRA2.

WWW: http://mizar.org/JFM/Vol11/integra2.html

The articles [20], [22], [3], [21], [12], [2], [5], [23], [13], [7], [6], [9], [4], [15], [8], [11], [14], [17], [18], [19], [10], [1], and [16] provide the notation and terminology for this paper.

## 1. Lemmas of Finite Sequence

We follow the rules: r, x, y are real numbers, i, j are natural numbers, and p is a finite sequence of elements of  $\mathbb{R}$ .

Next we state the proposition

(1) For every closed-interval subset *A* of  $\mathbb{R}$  and for every real number *x* holds  $x \in A$  iff  $\inf A \leq x$  and  $x \leq \sup A$ .

Let  $I_1$  be a finite sequence of elements of  $\mathbb{R}$ . We say that  $I_1$  is non-decreasing if and only if:

(Def. 1) For every natural number n such that  $n \in \text{dom } I_1$  and  $n+1 \in \text{dom } I_1$  holds  $I_1(n) \le I_1(n+1)$ .

Let us note that there exists a finite sequence of elements of  $\mathbb{R}$  which is non-decreasing. We now state three propositions:

- (2) Let p be a non-decreasing finite sequence of elements of  $\mathbb{R}$  and given i, j. If  $i \in \text{dom } p$  and  $j \in \text{dom } p$  and  $i \leq j$ , then  $p(i) \leq p(j)$ .
- (3) Let given p. Then there exists a non-decreasing finite sequence q of elements of  $\mathbb{R}$  such that p and q are fiberwise equipotent.
- (4) Let D be a non empty set, f be a finite sequence of elements of D, and  $k_1$ ,  $k_2$ ,  $k_3$  be natural numbers. If  $1 \le k_1$  and  $k_3 \le \text{len } f$  and  $k_1 \le k_2$  and  $k_2 < k_3$ , then  $(\text{mid}(f, k_1, k_2)) \cap \text{mid}(f, k_2 + 1, k_3) = \text{mid}(f, k_1, k_3)$ .

#### 2. SCALAR PRODUCT OF REAL SUBSET

Let *A* be a subset of  $\mathbb{R}$  and let *x* be a real number. The functor  $x \cdot A$  yields a subset of  $\mathbb{R}$  and is defined by:

(Def. 2) For every real number y holds  $y \in x \cdot A$  iff there exists a real number z such that  $z \in A$  and  $y = x \cdot z$ .

The following propositions are true:

- (5) Let X, Y be non empty sets and f be a partial function from X to  $\mathbb{R}$ . If f is upper bounded on X and  $Y \subseteq X$ , then  $f \upharpoonright Y$  is upper bounded on Y.
- (6) Let X, Y be non empty sets and f be a partial function from X to  $\mathbb{R}$ . If f is lower bounded on X and  $Y \subseteq X$ , then  $f \upharpoonright Y$  is lower bounded on Y.
- (7) For every non empty subset X of  $\mathbb{R}$  holds  $r \cdot X$  is non empty.
- (8) For every subset *X* of  $\mathbb{R}$  holds  $r \cdot X = \{r \cdot x : x \in X\}$ .
- (9) For every non empty subset X of  $\mathbb{R}$  such that X is upper bounded and  $0 \le r$  holds  $r \cdot X$  is upper bounded.
- (10) For every non empty subset X of  $\mathbb{R}$  such that X is upper bounded and  $r \leq 0$  holds  $r \cdot X$  is lower bounded.
- (11) For every non empty subset X of  $\mathbb{R}$  such that X is lower bounded and  $0 \le r$  holds  $r \cdot X$  is lower bounded.
- (12) For every non empty subset X of  $\mathbb{R}$  such that X is lower bounded and  $r \leq 0$  holds  $r \cdot X$  is upper bounded.
- (13) For every non empty subset X of  $\mathbb{R}$  such that X is upper bounded and  $0 \le r$  holds  $\sup(r \cdot X) = r \cdot \sup X$ .
- (14) For every non empty subset X of  $\mathbb{R}$  such that X is upper bounded and  $r \le 0$  holds  $\inf(r \cdot X) = r \cdot \sup X$ .
- (15) For every non empty subset X of  $\mathbb{R}$  such that X is lower bounded and  $0 \le r$  holds  $\inf(r \cdot X) = r \cdot \inf X$ .
- (16) For every non empty subset X of  $\mathbb{R}$  such that X is lower bounded and  $r \leq 0$  holds  $\sup(r \cdot X) = r \cdot \inf X$ .

## 3. SCALAR MULTIPLE OF INTEGRAL

One can prove the following propositions:

- (17) For every non empty set *X* and for every function *f* from *X* into  $\mathbb{R}$  holds  $\operatorname{rng}(r f) = r \cdot \operatorname{rng} f$ .
- (18) For all non empty sets X, Z and for every partial function f from X to  $\mathbb{R}$  holds  $\operatorname{rng}(r(f \upharpoonright Z)) = r \cdot \operatorname{rng}(f \upharpoonright Z)$ .
- (19) Let *A* be a closed-interval subset of  $\mathbb{R}$ , *f* be a function from *A* into  $\mathbb{R}$ , and *D* be an element of divs *A*. If *f* is bounded on *A* and  $r \ge 0$ , then (upper\_sum\_set r f)(D)  $\ge r \cdot \inf \operatorname{rng} f \cdot \operatorname{vol}(A)$ .
- (20) Let *A* be a closed-interval subset of  $\mathbb{R}$ , *f* be a function from *A* into  $\mathbb{R}$ , and *D* be an element of divs *A*. If *f* is bounded on *A* and  $r \le 0$ , then (upper\_sum\_set r f)(D)  $\ge r \cdot \sup \operatorname{rng} f \cdot \operatorname{vol}(A)$ .
- (21) Let *A* be a closed-interval subset of  $\mathbb{R}$ , *f* be a function from *A* into  $\mathbb{R}$ , and *D* be an element of divs *A*. If *f* is bounded on *A* and  $r \ge 0$ , then (lower\_sum\_set r f)(D)  $\le r \cdot \sup \operatorname{rng} f \cdot \operatorname{vol}(A)$ .

- (22) Let *A* be a closed-interval subset of  $\mathbb{R}$ , *f* be a function from *A* into  $\mathbb{R}$ , and *D* be an element of divs *A*. If *f* is bounded on *A* and  $r \le 0$ , then (lower\_sum\_set r f)(D)  $\le r \cdot \inf \operatorname{rng} f \cdot \operatorname{vol}(A)$ .
- (23) Let A be a closed-interval subset of  $\mathbb{R}$ , f be a function from A into  $\mathbb{R}$ , S be a non empty Division of A, D be an element of S, and given i. If  $i \in \text{Seglen } D$  and f is upper bounded on A and  $r \geq 0$ , then  $(\text{upper\_volume}(rf,D))(i) = r \cdot (\text{upper\_volume}(f,D))(i)$ .
- (24) Let A be a closed-interval subset of  $\mathbb{R}$ , f be a function from A into  $\mathbb{R}$ , S be a non empty Division of A, D be an element of S, and given i. If  $i \in \text{Seglen } D$  and f is upper bounded on A and  $r \leq 0$ , then  $(\text{lower\_volume}(r f, D))(i) = r \cdot (\text{upper\_volume}(f, D))(i)$ .
- (25) Let A be a closed-interval subset of  $\mathbb{R}$ , f be a function from A into  $\mathbb{R}$ , S be a non empty Division of A, D be an element of S, and given i. If  $i \in \text{Seg len } D$  and f is lower bounded on A and  $r \geq 0$ , then  $(\text{lower\_volume}(r f, D))(i) = r \cdot (\text{lower\_volume}(f, D))(i)$ .
- (26) Let *A* be a closed-interval subset of  $\mathbb{R}$ , *f* be a function from *A* into  $\mathbb{R}$ , *S* be a non empty Division of *A*, *D* be an element of *S*, and given *i*. If  $i \in \text{Seg len }D$  and *f* is lower bounded on *A* and  $r \leq 0$ , then (upper\_volume(r, f, D))(i) =  $r \cdot (\text{lower_volume}(f, D))(i)$ .
- (27) Let A be a closed-interval subset of  $\mathbb{R}$ , f be a function from A into  $\mathbb{R}$ , S be a non empty Division of A, and D be an element of S. If f is upper bounded on A and  $r \ge 0$ , then upper\_sum $(r, f, D) = r \cdot \text{upper\_sum}(f, D)$ .
- (28) Let A be a closed-interval subset of  $\mathbb{R}$ , f be a function from A into  $\mathbb{R}$ , S be a non empty Division of A, and D be an element of S. If f is upper bounded on A and  $r \leq 0$ , then lower\_sum $(r f, D) = r \cdot \text{upper\_sum}(f, D)$ .
- (29) Let A be a closed-interval subset of  $\mathbb{R}$ , f be a function from A into  $\mathbb{R}$ , S be a non empty Division of A, and D be an element of S. If f is lower bounded on A and  $r \ge 0$ , then lower\_sum $(r, D) = r \cdot \text{lower\_sum}(f, D)$ .
- (30) Let A be a closed-interval subset of  $\mathbb{R}$ , f be a function from A into  $\mathbb{R}$ , S be a non empty Division of A, and D be an element of S. If f is lower bounded on A and  $r \leq 0$ , then upper\_sum $(r f, D) = r \cdot \text{lower\_sum}(f, D)$ .
- (31) Let A be a closed-interval subset of  $\mathbb{R}$  and f be a function from A into  $\mathbb{R}$ . Suppose f is bounded on A and f is integrable on A. Then rf is integrable on A and integral  $rf = r \cdot \text{integral } f$ .

#### 4. Monotoneity of Integral

We now state three propositions:

- (32) Let A be a closed-interval subset of  $\mathbb R$  and f be a function from A into  $\mathbb R$ . Suppose f is bounded on A and f is integrable on A and for every x such that  $x \in A$  holds  $f(x) \ge 0$ . Then integral  $f \ge 0$ .
- (33) Let A be a closed-interval subset of  $\mathbb{R}$  and f, g be functions from A into  $\mathbb{R}$ . Suppose f is bounded on A and f is integrable on A and g is bounded on A and g is integrable on A. Then f-g is integrable on A and integral f-g integral g.
- (34) Let A be a closed-interval subset of  $\mathbb{R}$  and f, g be functions from A into  $\mathbb{R}$ . Suppose that
  - (i) f is bounded on A,
- (ii) f is integrable on A,
- (iii) g is bounded on A,
- (iv) g is integrable on A, and
- (v) for every x such that  $x \in A$  holds  $f(x) \ge g(x)$ . Then integral  $f \ge$  integral g.

## 5. DEFINITION OF DIVISION SEQUENCE

We now state two propositions:

- (35) Let A be a closed-interval subset of  $\mathbb{R}$  and f be a function from A into  $\mathbb{R}$ . If f is bounded on A, then rng upper\_sum\_set f is lower bounded.
- (36) Let A be a closed-interval subset of  $\mathbb{R}$  and f be a function from A into  $\mathbb{R}$ . If f is bounded on A, then rng lower\_sum\_set f is upper bounded.

Let A be a closed-interval subset of  $\mathbb{R}$ . A DivSequence of A is a function from  $\mathbb{N}$  into divs A. Let A be a closed-interval subset of  $\mathbb{R}$  and let T be a DivSequence of A. The functor  $\delta_T$  yielding a sequence of real numbers is defined by:

(Def. 3) For every *i* holds  $\delta_T(i) = \delta_{T(i)}$ .

Let A be a closed-interval subset of  $\mathbb{R}$ , let f be a partial function from A to  $\mathbb{R}$ , and let T be a DivSequence of A. The functor upper\_sum(f,T) yields a sequence of real numbers and is defined as follows:

(Def. 4) For every i holds (upper\_sum(f,T))(i) = upper\_sum(f,T(i)).

The functor lower\_sum(f,T) yielding a sequence of real numbers is defined as follows:

(Def. 5) For every i holds (lower\_sum(f,T)) $(i) = lower_sum(f,T(i))$ .

One can prove the following propositions:

- (37) Let A be a closed-interval subset of  $\mathbb{R}$  and  $D_1$ ,  $D_2$  be elements of divs A. If  $D_1 \leq D_2$ , then for every j such that  $j \in \text{dom } D_2$  there exists i such that  $i \in \text{dom } D_1$  and  $\text{divset}(D_2, j) \subseteq \text{divset}(D_1, i)$ .
- (38) For all finite non empty subsets X, Y of  $\mathbb{R}$  such that  $X \subseteq Y$  holds  $\max X \leq \max Y$ .
- (39) For all finite non empty subsets X, Y of  $\mathbb{R}$  such that there exists y such that  $y \in Y$  and  $\max X \leq y$  holds  $\max X \leq \max Y$ .
- (40) For all closed-interval subsets A, B of  $\mathbb{R}$  such that  $A \subseteq B$  holds  $vol(A) \le vol(B)$ .
- (41) For every closed-interval subset A of  $\mathbb{R}$  and for all elements  $D_1$ ,  $D_2$  of divs A such that  $D_1 \leq D_2$  holds  $\delta_{(D_1)} \geq \delta_{(D_2)}$ .

#### REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card\_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat\_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq\_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct\_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_2.html.
- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [8] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rysum 1.html.
- [9] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in £<sup>2</sup>. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/pscomp\_1.html.

- $[10] \ \ Agata \ Darmochwał. \ Finite sets. \ \textit{Journal of Formalized Mathematics}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/finset\_1.html}.$
- [11] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. *Journal of Formalized Mathematics*, 11, 1999. http://mizar.org/JFM/Vol11/integral.html.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real\_1.html.
- [13] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seq\_4.html.
- [14] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seg\_1.html.
- [15] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct\_1.html.
- [16] Jarosław Kotowicz. Functions and finite sequences of real numbers. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/ JFM/Vol5/rfinseq.html.
- [17] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/jordan3.html.
- [18] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/pre\_circ.html.
- [19] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp\_1.html.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [21] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- $[22] \ \ \textbf{Zinaida Trybulec. Properties of subsets. } \textbf{\textit{Journal of Formalized Mathematics}}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset\_1.html}.$
- [23] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset\_1.html.

Received December 7, 1999

Published January 2, 2004