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Summary. The goal of this article is to prove a scalar multiplicity of Riemann definite
integral. Therefore, we defined a scalar product to the subset of real space, and we proved
some relating lemmas. At last, we proved a scalar multiplicity of Riemann definite integral.
As a result, a linearity of Riemann definite integral was proven by unifying the previous article
[11].

MML Identifier: INTEGRA2.
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The articles [20], [22], [3], [21], [12], [2], [5], [23], [13], [7], [6], [9], [4], [15], [8], [11], [14], [17],
[18], [19], [10], [1], and [16] provide the notation and terminology for this paper.

1. LEMMAS OF FINITE SEQUENCE

We follow the rules:r, x, y are real numbers,i, j are natural numbers, andp is a finite sequence of
elements ofR.

Next we state the proposition

(1) For every closed-interval subsetA of R and for every real numberx holdsx∈A iff inf A≤ x
andx≤ supA.

Let I1 be a finite sequence of elements ofR. We say thatI1 is non-decreasing if and only if:

(Def. 1) For every natural numbern such thatn∈ domI1 andn+1∈ domI1 holdsI1(n)≤ I1(n+1).

Let us note that there exists a finite sequence of elements ofR which is non-decreasing.
We now state three propositions:

(2) Let p be a non-decreasing finite sequence of elements ofR and giveni, j. If i ∈ domp and
j ∈ domp andi ≤ j, thenp(i)≤ p( j).

(3) Let givenp. Then there exists a non-decreasing finite sequenceq of elements ofR such
that p andq are fiberwise equipotent.

(4) LetD be a non empty set,f be a finite sequence of elements ofD, andk1, k2, k3 be natural
numbers. If 1≤ k1 andk3≤ len f andk1≤ k2 andk2 < k3, then(mid( f ,k1,k2))a mid( f ,k2+
1,k3) = mid( f ,k1,k3).
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2. SCALAR PRODUCT OFREAL SUBSET

Let A be a subset ofR and letx be a real number. The functorx·A yields a subset ofR and is defined
by:

(Def. 2) For every real numbery holdsy∈ x ·A iff there exists a real numberz such thatz∈ A and
y = x ·z.

The following propositions are true:

(5) Let X, Y be non empty sets andf be a partial function fromX to R. If f is upper bounded
onX andY ⊆ X, then f �Y is upper bounded onY.

(6) Let X, Y be non empty sets andf be a partial function fromX to R. If f is lower bounded
onX andY ⊆ X, then f �Y is lower bounded onY.

(7) For every non empty subsetX of R holdsr ·X is non empty.

(8) For every subsetX of R holdsr ·X = {r ·x : x∈ X}.

(9) For every non empty subsetX of R such thatX is upper bounded and 0≤ r holdsr ·X is
upper bounded.

(10) For every non empty subsetX of R such thatX is upper bounded andr ≤ 0 holdsr ·X is
lower bounded.

(11) For every non empty subsetX of R such thatX is lower bounded and 0≤ r holdsr ·X is
lower bounded.

(12) For every non empty subsetX of R such thatX is lower bounded andr ≤ 0 holdsr ·X is
upper bounded.

(13) For every non empty subsetX of R such thatX is upper bounded and 0≤ r holds sup(r ·
X) = r ·supX.

(14) For every non empty subsetX of R such thatX is upper bounded andr ≤ 0 holds inf(r ·X) =
r ·supX.

(15) For every non empty subsetX of R such thatX is lower bounded and 0≤ r holds inf(r ·X) =
r · inf X.

(16) For every non empty subsetX of R such thatX is lower bounded andr ≤ 0 holds sup(r ·
X) = r · inf X.

3. SCALAR MULTIPLE OF INTEGRAL

One can prove the following propositions:

(17) For every non empty setX and for every functionf from X into R holds rng(r f ) = r ·rng f .

(18) For all non empty setsX, Z and for every partial functionf from X to R holds
rng(r ( f �Z)) = r · rng( f �Z).

(19) LetA be a closed-interval subset ofR, f be a function fromA into R, andD be an element
of divsA. If f is bounded onA andr ≥ 0, then(uppersumsetr f )(D)≥ r · inf rng f ·vol(A).

(20) LetA be a closed-interval subset ofR, f be a function fromA into R, andD be an element
of divsA. If f is bounded onA andr ≤ 0, then(uppersumsetr f )(D)≥ r ·suprngf ·vol(A).

(21) LetA be a closed-interval subset ofR, f be a function fromA into R, andD be an element
of divsA. If f is bounded onA andr ≥ 0, then(lower sumsetr f )(D)≤ r ·suprngf ·vol(A).
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(22) LetA be a closed-interval subset ofR, f be a function fromA into R, andD be an element
of divsA. If f is bounded onA andr ≤ 0, then(lower sumsetr f )(D)≤ r · inf rng f ·vol(A).

(23) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, D be an element ofS, and giveni. If i ∈ SeglenD and f is upper bounded on
A andr ≥ 0, then(uppervolume(r f ,D))(i) = r · (uppervolume( f ,D))(i).

(24) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, D be an element ofS, and giveni. If i ∈ SeglenD and f is upper bounded on
A andr ≤ 0, then(lower volume(r f ,D))(i) = r · (uppervolume( f ,D))(i).

(25) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, D be an element ofS, and giveni. If i ∈ SeglenD and f is lower bounded on
A andr ≥ 0, then(lower volume(r f ,D))(i) = r · (lower volume( f ,D))(i).

(26) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, D be an element ofS, and giveni. If i ∈ SeglenD and f is lower bounded on
A andr ≤ 0, then(uppervolume(r f ,D))(i) = r · (lower volume( f ,D))(i).

(27) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, and D be an element ofS. If f is upper bounded onA and r ≥ 0, then
uppersum(r f ,D) = r ·uppersum( f ,D).

(28) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, and D be an element ofS. If f is upper bounded onA and r ≤ 0, then
lower sum(r f ,D) = r ·uppersum( f ,D).

(29) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, and D be an element ofS. If f is lower bounded onA and r ≥ 0, then
lower sum(r f ,D) = r · lower sum( f ,D).

(30) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, and D be an element ofS. If f is lower bounded onA and r ≤ 0, then
uppersum(r f ,D) = r · lower sum( f ,D).

(31) Let A be a closed-interval subset ofR and f be a function fromA into R. Supposef
is bounded onA and f is integrable onA. Then r f is integrable onA and integralr f =
r · integralf .

4. MONOTONEITY OF INTEGRAL

We now state three propositions:

(32) Let A be a closed-interval subset ofR and f be a function fromA into R. Supposef is
bounded onA and f is integrable onA and for everyx such thatx∈ A holds f (x) ≥ 0. Then
integralf ≥ 0.

(33) LetA be a closed-interval subset ofR and f , g be functions fromA into R. Supposef is
bounded onA and f is integrable onA andg is bounded onA andg is integrable onA. Then
f −g is integrable onA and integralf −g = integralf − integralg.

(34) LetA be a closed-interval subset ofR and f , g be functions fromA into R. Suppose that

(i) f is bounded onA,

(ii) f is integrable onA,

(iii) g is bounded onA,

(iv) g is integrable onA, and

(v) for everyx such thatx∈ A holds f (x)≥ g(x).

Then integralf ≥ integralg.
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5. DEFINITION OF DIVISION SEQUENCE

We now state two propositions:

(35) LetA be a closed-interval subset ofR and f be a function fromA into R. If f is bounded
onA, then rnguppersumsetf is lower bounded.

(36) LetA be a closed-interval subset ofR and f be a function fromA into R. If f is bounded
onA, then rnglowersumsetf is upper bounded.

Let A be a closed-interval subset ofR. A DivSequence ofA is a function fromN into divsA.
Let A be a closed-interval subset ofR and letT be a DivSequence ofA. The functorδT yielding

a sequence of real numbers is defined by:

(Def. 3) For everyi holdsδT(i) = δT(i).

Let A be a closed-interval subset ofR, let f be a partial function fromA to R, and letT be a
DivSequence ofA. The functor uppersum( f ,T) yields a sequence of real numbers and is defined
as follows:

(Def. 4) For everyi holds(uppersum( f ,T))(i) = uppersum( f ,T(i)).

The functor lowersum( f ,T) yielding a sequence of real numbers is defined as follows:

(Def. 5) For everyi holds(lower sum( f ,T))(i) = lower sum( f ,T(i)).

One can prove the following propositions:

(37) Let A be a closed-interval subset ofR and D1, D2 be elements of divsA. If D1 ≤ D2,
then for everyj such thatj ∈ domD2 there existsi such thati ∈ domD1 and divset(D2, j)⊆
divset(D1, i).

(38) For all finite non empty subsetsX, Y of R such thatX ⊆Y holds maxX ≤maxY.

(39) For all finite non empty subsetsX, Y of R such that there existsy such thaty ∈ Y and
maxX ≤ y holds maxX ≤maxY.

(40) For all closed-interval subsetsA, B of R such thatA⊆ B holds vol(A)≤ vol(B).

(41) For every closed-interval subsetA of R and for all elementsD1, D2 of divsA such that
D1 ≤ D2 holdsδ(D1) ≥ δ(D2).
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