The Divisibility of Integers and Integer Relatively Primes ¹

Rafał Kwiatek Warsaw University Białystok Grzegorz Zwara Nicolaus Copernicus University Toruń

Summary. We introduce the following notions: 1) the least common multiple of two integers (lcm(i, j)), 2) the greatest common divisor of two integers (gcd(i, j)), 3) the relative prime integer numbers, 4) the prime numbers. A few facts concerning the above items, among them a so-called Fundamental Theorem of Arithmetic, are introduced.

MML Identifier: INT_2.

WWW: http://mizar.org/JFM/Vol2/int_2.html

The articles [6], [3], [2], [4], [1], and [5] provide the notation and terminology for this paper.

In this paper a, b are natural numbers.

We now state four propositions:

- $(3)^1$ 0 | a iff a = 0.
- (4) a = 0 or b = 0 iff lcm(a, b) = 0.
- (5) a = 0 and b = 0 iff gcd(a, b) = 0.
- (6) $a \cdot b = \operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)$.

We adopt the following rules: m, n denote natural numbers and a, b, c, a_1 , b_1 denote integers. We now state a number of propositions:

- $(8)^2$ -n is a natural number iff n = 0.
- (9) -1 is a natural number.
- (10) $0 \mid a \text{ iff } a = 0.$
- (11) $a \mid -a \text{ and } -a \mid a$.
- (12) If $a \mid b$, then $a \mid b \cdot c$.
- (13) If $a \mid b$ and $b \mid c$, then $a \mid c$.
- (14)(i) $a \mid b \text{ iff } a \mid -b,$
- (ii) $a \mid b \text{ iff } -a \mid b$,
- (iii) $a \mid b \text{ iff } -a \mid -b, \text{ and }$
- (iv) $a \mid -b \text{ iff } -a \mid b.$

¹Supported by RPBP.III-24.B5.

¹ The propositions (1) and (2) have been removed.

² The proposition (7) has been removed.

- (15) If $a \mid b$ and $b \mid a$, then a = b or a = -b.
- (16) $a \mid 0$ and $1 \mid a$ and $-1 \mid a$.
- (17) If $a \mid 1$ or $a \mid -1$, then a = 1 or a = -1.
- (18) If a = 1 or a = -1, then $a \mid 1$ and $a \mid -1$.
- (19) $a \equiv b \pmod{c}$ iff $c \mid a b$.
- (20) |a| is a natural number.
- (21) $a \mid b \text{ iff } |a| \mid |b|$.

Let us consider a, b. The functor lcm(a,b) yielding an integer is defined by:

(Def. 2)³
$$lcm(a,b) = lcm(|a|,|b|)$$
.

Let us observe that the functor lcm(a,b) is commutative.

Next we state four propositions:

- $(23)^4$ lcm(a,b) is a natural number.
- $(25)^5$ $a \mid \text{lcm}(a,b)$.
- (26) $b \mid \text{lcm}(a,b)$.
- (27) For every c such that $a \mid c$ and $b \mid c$ holds $lcm(a,b) \mid c$.

Let us consider a, b. The functor $a \gcd b$ yields an integer and is defined as follows:

(Def. 3)
$$a \gcd b = \gcd(|a|, |b|).$$

Let us notice that the functor $a \gcd b$ is commutative.

We now state several propositions:

- $(29)^6$ a gcd b is a natural number.
- $(31)^7$ $a \gcd b \mid a$.
- (32) $a \gcd b \mid b$.
- (33) For every c such that $c \mid a$ and $c \mid b$ holds $c \mid a \gcd b$.
- (34) a = 0 or b = 0 iff lcm(a, b) = 0.
- (35) a = 0 and b = 0 iff $a \gcd b = 0$.

Let us consider a, b. We say that a and b are relative prime if and only if:

(Def. 4)
$$a \gcd b = 1$$
.

Let us note that the predicate a and b are relative prime is symmetric.

One can prove the following propositions:

(38)⁸ If $a \neq 0$ or $b \neq 0$, then there exist a_1 , b_1 such that $a = (a \gcd b) \cdot a_1$ and $b = (a \gcd b) \cdot b_1$ and a_1 and b_1 are relative prime.

³ The definition (Def. 1) has been removed.

⁴ The proposition (22) has been removed.

⁵ The proposition (24) has been removed.

⁶ The proposition (28) has been removed.

⁷ The proposition (30) has been removed.

⁸ The propositions (36) and (37) have been removed.

- (39) If a and b are relative prime, then $c \cdot a \gcd c \cdot b = |c|$ and $c \cdot a \gcd b \cdot c = |c|$ and $a \cdot c \gcd c \cdot b = |c|$ and $a \cdot c \gcd b \cdot c = |c|$.
- (40) If $c \mid a \cdot b$ and a and c are relative prime, then $c \mid b$.
- (41) If a and c are relative prime and b and c are relative prime, then $a \cdot b$ and c are relative prime.

In the sequel p, q, k, l denote natural numbers.

Let us consider p. We say that p is prime if and only if:

(Def. 5) p > 1 and for every n such that $n \mid p$ holds n = 1 or n = p.

Let us consider m, n. We say that m and n are relative prime if and only if:

(Def. 6) gcd(m, n) = 1.

One can prove the following propositions:

- $(44)^9$ 2 is prime.
- $(46)^{10}$ There exists p such that p is not prime.
- (47) If p is prime and q is prime, then p and q are relative prime or p = q.

In this article we present several logical schemes. The scheme Ind1 deals with a natural number \mathcal{A} and a unary predicate \mathcal{P} , and states that:

For every k such that $k \geq \mathcal{A}$ holds $\mathcal{P}[k]$

provided the following requirements are met:

- $\mathcal{P}[\mathcal{A}]$, and
- For every k such that $k \ge \mathcal{A}$ and $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$.

The scheme *Comp Ind1* deals with a natural number \mathcal{A} and a unary predicate \mathcal{P} , and states that: For every k such that $k \geq \mathcal{A}$ holds $\mathcal{P}[k]$

provided the parameters meet the following condition:

• For every k such that $k \ge \mathcal{A}$ and for every n such that $n \ge \mathcal{A}$ and n < k holds $\mathcal{P}[n]$ holds $\mathcal{P}[k]$.

The following proposition is true

(48) If l > 2, then there exists p such that p is prime and $p \mid l$.

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/ JFM/Vol1/nat 1.html.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [3] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [4] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [5] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.

⁹ The propositions (42) and (43) have been removed.

¹⁰ The proposition (45) has been removed.

 $[6] \begin{tabular}{ll} Zinaida\ Trybulec.\ Properties\ of\ subsets.\ {\it Journal\ of\ Formalized\ Mathematics},1,1989.\ \verb|http://mizar.org/JFM/Vol1/subset_1.html|.\\ \end{tabular}$

Received July 10, 1990

Published January 2, 2004