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Summary. We introduce the following notions: 1) the least common multiple of two
integers (Icnfi, j)), 2) the greatest common divisor of two integers (Gcf), 3) the relative
prime integer numbers, 4) the prime numbers. A few facts concerning the above items, among
them a so-called Fundamental Theorem of Arithmetic, are introduced.
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The articlesl[6],[[3],12],[4], 1], and[5] provide the notation and terminology for this paper.
In this papela, b are natural numbers.
We now state four propositions:

@3f] olaiffa=o0.

(4) a=0orb=0ifflcm(ab)=0.
(5) a=0andb=0iffgcd(a,b) =0.
(6) a-b=Icm(a,b)-gcda,b).

We adopt the following rulesn, n denote natural numbers aagdb, c, a1, b; denote integers.
We now state a number of propositions:

(8f] —nis a natural number iffi = 0.
(9) —1is anatural number.

(10) O|aiff a=0.

(11) a|-aand—ala.

(12) Ifal|b,thenalb-c.

(13) Ifaljbandb|c,thenalc.

(14)()) a|biff a| —b,

(i) a|biff —a|b,

(i) al|biff —a] —b, and

(iv) a|-biff —a|b.

1Supported by RPBP.1I1-24.B5.
1 The propositions (1) and (2) have been removed.
2 The proposition (7) has been removed.

(© Association of Mizar Users


http://mizar.org/JFM/Vol2/int_2.html

THE DIVISIBILITY OF INTEGERS AND INTEGER. .. 2

(15) Ifa|bandb|a, thena=bora=—b.

(16) a|Oand1jaand-1]a

(17) Ifajlora|-1,thena=1ora=-1

(18) Ifa=1lora=—1,thena|landal|—-1.

(19) a=b(modc) iff c|a—h.

(20) |a|is a natural number.

(21) a|biff |a|||b].

Let us considea, b. The functor Icnga, b) yielding an integer is defined by:

(Def. 2f| lem(a,b) = lem(|al,|b)).

Let us observe that the functor I€eb) is commutative.
Next we state four propositions:

(23@ Icm(a, b) is a natural number.
5] allem(a,b).
(26) b|lecm(a,b).
(27) For everyc such thag | candb | c holds Icn{a,b) | c.
Let us considea, b. The functoragcdb yields an integer and is defined as follows:
(Def. 3) agcdb=gcd(|al, |b|).

Let us notice that the funct@gcdb is commutative.
We now state several propositions:

(29f] agcdbis a natural number.

(31)] agedo|a.

(32) agcdb|h.

(33) For every such that | aandc | b holdsc | agcdb.

(34) a=0orb=0ifflem(ab)=0.

(35) a=0andb=0iff agcdb=0.

Let us consideg, b. We say that andb are relative prime if and only if:

(Def. 4) agcdb=1.

Let us note that the predicaseandb are relative prime is symmetric.
One can prove the following propositions:

(38 If a# 0 orb = 0, then there exisgs, by such thaia = (agcdb) - a; andb = (agcdb) - by
anda; andb; are relative prime.

3 The definition (Def. 1) has been removed.

4 The proposition (22) has been removed.

5 The proposition (24) has been removed.

6 The proposition (28) has been removed.

7 The proposition (30) has been removed.

8 The propositions (36) and (37) have been removed.
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(39) Ifaandbare relative prime, theo- agcdc-b = |c| andc-agcdb- ¢ = |c| anda-cgedc-b =
|c| anda-cgcdb-c = |c|.

(40) Ifc|a-bandaandc are relative prime, thea| b.

(41) |If aandc are relative prime antd andc are relative prime, thea-b andc are relative
prime.

In the sequep, q, k, | denote natural numbers.
Let us considep. We say thap is prime if and only if:

(Def. 5) p> 1and for evenyn such than | pholdsn=1orn=p.
Let us considem, n. We say thatn andn are relative prime if and only if:
(Def. 6) gcdm,n) =1.
One can prove the following propositions:
(44f] 2is prime.
(46)19 There existp such thaip is not prime.
(47) If pis prime andj is prime, thenp andq are relative prime op = g.

In this article we present several logical schemes. The schafieleals with a natural number
4 and a unary predicatg, and states that:
For everyk such thak > 4 holdsP[K]
provided the following requirements are met:
e P[4],and
e For everyk such thak > 4 and?[k] holdsP[k+ 1].
The schem&omp Indldeals with a natural numbet and a unary predicatg, and states that:
For everyk such thak > 4 holdsP[K]
provided the parameters meet the following condition:
e For everyk such thak > 4 and for everyn such thain > 2 andn < k holds 2[n]
holds?[K].
The following proposition is true

(48) Ifl > 2, then there existp such thafp is prime andp | I.
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