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Summary. In the article the following concepts were introduced: the set of integers
(Z) and its elements (integers), congruences (i1 ≡ i2(modi3)), the ceiling and floor functors
(dxe andbxc), also the fraction part of a real number (frac), the integer division (÷) and re-
mainder of integer division (mod). The following schemes were also included: the separation
scheme (SepInt), the schemes of integer induction (Int Ind Down, Int Ind Up, Int Ind Full),
the minimum (Int Min) and maximum (Int Max) schemes (the existence of minimum and
maximum integers enjoying a given property).

MML Identifier: INT_1.

WWW: http://mizar.org/JFM/Vol2/int_1.html

The articles [6], [3], [8], [1], [2], [7], [4], and [5] provide the notation and terminology for this
paper.

We adopt the following rules:x denotes a set,k, n1, n2 denote natural numbers, andr denotes a
real number.

Let us observe that every element ofC is complex.
Z can be characterized by the condition:

(Def. 1) x∈ Z iff there existsk such thatx = k or x =−k.

Let i be a number. We say thati is integer if and only if:

(Def. 2) i is an element ofZ.

One can check the following observations:

∗ there exists a real number which is integer,

∗ there exists a number which is integer, and

∗ every element ofZ is integer.

An integer is an integer number.
One can prove the following proposition

(8)1 r is an integer iff there existsk such thatr = k or r =−k.

Let us note that every natural number is integer and every number which is natural is also integer.
We now state the proposition

(11)2 If x∈ Z, thenx∈ R.

1 The propositions (1)–(7) have been removed.
2 The propositions (9) and (10) have been removed.
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Let us observe that every number which is integer is also real.
We now state three propositions:

(12) x is an integer iffx∈ Z.

(14)3 N⊆ Z.

(15) Z⊆ R.

In the sequeli0, i1, i2, i3, i4, i5 denote integers.
Let i1, i2 be integers. Observe thati1 + i2 is integer andi1 · i2 is integer.
Let i0 be an integer. Observe that−i0 is integer.
Let i1, i2 be integers. One can check thati1− i2 is integer.
Let n be a natural number. Observe that−n is integer. Leti1 be an integer. One can check the

following observations:

∗ i1 +n is integer,

∗ i1 ·n is integer, and

∗ i1−n is integer.

Let us considern1, n2. Observe thatn1−n2 is integer.
One can prove the following propositions:

(16) If 0≤ i0, theni0 is a natural number.

(17) If r is an integer, thenr +1 is an integer andr −1 is an integer.

(18) If i2 ≤ i1, theni1− i2 is a natural number.

(19) If i1 +k = i2, theni1 ≤ i2.

(20) If i0 < i1, theni0 +1≤ i1.

(21) If i1 < 0, theni1 ≤−1.

(22) i1 · i2 = 1 iff i1 = 1 andi2 = 1 or i1 =−1 andi2 =−1.

(23) i1 · i2 =−1 iff i1 =−1 andi2 = 1 or i1 = 1 andi2 =−1.

(26)4 r −1 < r.

In this article we present several logical schemes. The schemeSepIntconcerns a unary predicate
P , and states that:

There exists a subsetX of Z such that for every integerx holdsx∈ X iff P [x]
for all values of the parameters.

The schemeInt Ind Updeals with an integerA and a unary predicateP , and states that:
For everyi0 such thatA ≤ i0 holdsP [i0]

provided the following conditions are satisfied:
• P [A ], and
• For everyi2 such thatA ≤ i2 holds if P [i2], thenP [i2 +1].

The schemeInt Ind Downdeals with an integerA and a unary predicateP , and states that:
For everyi0 such thati0 ≤ A holdsP [i0]

provided the parameters meet the following requirements:
• P [A ], and
• For everyi2 such thati2 ≤ A holds if P [i2], thenP [i2−1].

The schemeInt Ind Full deals with an integerA and a unary predicateP , and states that:
For everyi0 holdsP [i0]

3 The proposition (13) has been removed.
4 The propositions (24) and (25) have been removed.
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provided the following requirements are met:
• P [A ], and
• For everyi2 such thatP [i2] holdsP [i2−1] andP [i2 +1].

The schemeInt Min deals with an integerA and a unary predicateP , and states that:
There existsi0 such thatP [i0] and for everyi1 such thatP [i1] holdsi0 ≤ i1

provided the parameters meet the following conditions:
• For everyi1 such thatP [i1] holdsA ≤ i1, and
• There existsi1 such thatP [i1].

The schemeInt Maxdeals with an integerA and a unary predicateP , and states that:
There existsi0 such thatP [i0] and for everyi1 such thatP [i1] holdsi1 ≤ i0

provided the following requirements are met:
• For everyi1 such thatP [i1] holdsi1 ≤ A , and
• There existsi1 such thatP [i1].

Let us considerr. One can verify that sgnr is integer.
One can prove the following propositions:

(29)5 sgnr = 1 or sgnr =−1 or sgnr = 0.

(30) |r|= r or |r|=−r.

Let us consideri0. One can check that|i0| is integer.
Let i1, i2, i3 be integers. The predicatei1 ≡ i2(modi3) is defined by:

(Def. 3) There existsi4 such thati3 · i4 = i1− i2.

The following propositions are true:

(32)6 i1 ≡ i1(modi2).

(33) i1 ≡ 0(modi1) and 0≡ i1(modi1).

(34) i1 ≡ i2(mod1).

(35) If i1 ≡ i2(modi3), theni2 ≡ i1(modi3).

(36) If i1 ≡ i2(modi5) andi2 ≡ i3(modi5), theni1 ≡ i3(modi5).

(37) If i1 ≡ i2(modi5) andi3 ≡ i4(modi5), theni1 + i3 ≡ i2 + i4(modi5).

(38) If i1 ≡ i2(modi5) andi3 ≡ i4(modi5), theni1− i3 ≡ i2− i4(modi5).

(39) If i1 ≡ i2(modi5) andi3 ≡ i4(modi5), theni1 · i3 ≡ i2 · i4(modi5).

(40) i1 + i2 ≡ i3(modi5) iff i1 ≡ i3− i2(modi5).

(41) If i4 · i5 = i3, then if i1 ≡ i2(modi3), theni1 ≡ i2(modi4).

(42) i1 ≡ i2(modi5) iff i1 + i5 ≡ i2(modi5).

(43) i1 ≡ i2(modi5) iff i1− i5 ≡ i2(modi5).

(44) If i1 ≤ r andr −1 < i1 andi2 ≤ r andr −1 < i2, theni1 = i2.

(45) If r ≤ i1 andi1 < r +1 andr ≤ i2 andi2 < r +1, theni1 = i2.

Let r be a real number. The functorbrc yielding an integer is defined as follows:

(Def. 4) brc ≤ r andr −1 < brc.

Next we state several propositions:

5 The propositions (27) and (28) have been removed.
6 The proposition (31) has been removed.
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(47)7 brc= r iff r is integer.

(48) brc< r iff r is not integer.

(50)8 brc−1 < r andbrc< r +1.

(51) brc+ i0 = br + i0c.

(52) r < brc+1.

Let r be a real number. The functordre yields an integer and is defined as follows:

(Def. 5) r ≤ dre anddre< r +1.

We now state a number of propositions:

(54)9 dre= r iff r is integer.

(55) r < dre iff r is not integer.

(57)10 r −1 < dre andr < dre+1.

(58) dre+ i0 = dr + i0e.

(59) brc= dre iff r is integer.

(60) brc< dre iff r is not integer.

(61) brc ≤ dre.

(62) bdrec= dre.

(63) bbrcc= brc.

(64) ddree= dre.

(65) dbrce= brc.

(66) brc= dre iff brc+1 6= dre.

Let r be a real number. The functor fracr is defined by:

(Def. 6) fracr = r −brc.

Let r be a real number. One can verify that fracr is real.
Let r be a real number. Then fracr is a real number.
We now state several propositions:

(68)11 r = brc+ fracr.

(69) fracr < 1 and 0≤ fracr.

(70) bfracrc= 0.

(71) fracr = 0 iff r is integer.

(72) 0< fracr iff r is not integer.

Let i1, i2 be integers. The functori1÷ i2 yields an integer and is defined by:

(Def. 7) i1÷ i2 = b i1
i2
c.

7 The proposition (46) has been removed.
8 The proposition (49) has been removed.
9 The proposition (53) has been removed.

10 The proposition (56) has been removed.
11 The proposition (67) has been removed.
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Let i1, i2 be integers. The functori1 modi2 yielding an integer is defined as follows:

(Def. 8) i1 modi2 =
{

i1− (i1÷ i2) · i2, if i2 6= 0,
0, otherwise.

Let i1, i2 be integers. The predicatei1 | i2 is defined as follows:

(Def. 9) There existsi3 such thati2 = i1 · i3.

Let us note that the predicatei1 | i2 is reflexive.
Next we state four propositions:

(74)12 For every real numberr such thatr 6= 0 holdsb r
r c= 1.

(75) For every integeri holdsi÷0 = 0.

(76) For every integeri such thati 6= 0 holdsi÷ i = 1.

(77) For every integeri holdsi modi = 0.
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