Integers

Michał J. Trybulec Warsaw University Białystok

Summary. In the article the following concepts were introduced: the set of integers (\mathbb{Z}) and its elements (integers), congruences $(i_1 \equiv i_2 \pmod{i_3})$, the ceiling and floor functors $(\lceil x \rceil)$ and $\lfloor x \rfloor$, also the fraction part of a real number (frac), the integer division (\div) and remainder of integer division (mod). The following schemes were also included: the separation scheme (SepInt), the schemes of integer induction (Int_Ind_Down , Int_Ind_Up , Int_Ind_Full), the minimum (Int_Min) and maximum (Int_Max) schemes (the existence of minimum and maximum integers enjoying a given property).

MML Identifier: INT_1.

WWW: http://mizar.org/JFM/Vol2/int_1.html

The articles [6], [3], [8], [1], [2], [7], [4], and [5] provide the notation and terminology for this paper.

We adopt the following rules: x denotes a set, k, n_1 , n_2 denote natural numbers, and r denotes a real number.

Let us observe that every element of \mathbb{C} is complex.

 \mathbb{Z} can be characterized by the condition:

(Def. 1) $x \in \mathbb{Z}$ iff there exists k such that x = k or x = -k.

Let i be a number. We say that i is integer if and only if:

(Def. 2) i is an element of \mathbb{Z} .

One can check the following observations:

- * there exists a real number which is integer,
- * there exists a number which is integer, and
- * every element of \mathbb{Z} is integer.

An integer is an integer number.

One can prove the following proposition

(8)¹ r is an integer iff there exists k such that r = k or r = -k.

Let us note that every natural number is integer and every number which is natural is also integer. We now state the proposition

 $(11)^2$ If $x \in \mathbb{Z}$, then $x \in \mathbb{R}$.

¹ The propositions (1)–(7) have been removed.

² The propositions (9) and (10) have been removed.

Let us observe that every number which is integer is also real.

We now state three propositions:

- (12) x is an integer iff $x \in \mathbb{Z}$.
- $(14)^3 \quad \mathbb{N} \subseteq \mathbb{Z}.$
- (15) $\mathbb{Z} \subseteq \mathbb{R}$.

In the sequel i_0 , i_1 , i_2 , i_3 , i_4 , i_5 denote integers.

Let i_1 , i_2 be integers. Observe that $i_1 + i_2$ is integer and $i_1 \cdot i_2$ is integer.

Let i_0 be an integer. Observe that $-i_0$ is integer.

Let i_1 , i_2 be integers. One can check that $i_1 - i_2$ is integer.

Let n be a natural number. Observe that -n is integer. Let i_1 be an integer. One can check the following observations:

- * $i_1 + n$ is integer,
- * $i_1 \cdot n$ is integer, and
- * $i_1 n$ is integer.

Let us consider n_1 , n_2 . Observe that $n_1 - n_2$ is integer.

One can prove the following propositions:

- (16) If $0 \le i_0$, then i_0 is a natural number.
- (17) If r is an integer, then r+1 is an integer and r-1 is an integer.
- (18) If $i_2 \le i_1$, then $i_1 i_2$ is a natural number.
- (19) If $i_1 + k = i_2$, then $i_1 \le i_2$.
- (20) If $i_0 < i_1$, then $i_0 + 1 \le i_1$.
- (21) If $i_1 < 0$, then $i_1 \le -1$.
- (22) $i_1 \cdot i_2 = 1$ iff $i_1 = 1$ and $i_2 = 1$ or $i_1 = -1$ and $i_2 = -1$.
- (23) $i_1 \cdot i_2 = -1$ iff $i_1 = -1$ and $i_2 = 1$ or $i_1 = 1$ and $i_2 = -1$.
- $(26)^4$ r-1 < r.

In this article we present several logical schemes. The scheme SepInt concerns a unary predicate \mathcal{P} , and states that:

There exists a subset X of \mathbb{Z} such that for every integer x holds $x \in X$ iff $\mathcal{P}[x]$ for all values of the parameters.

The scheme Int Ind Up deals with an integer \mathcal{A} and a unary predicate \mathcal{P} , and states that:

For every i_0 such that $\mathcal{A} \leq i_0$ holds $\mathcal{P}[i_0]$

provided the following conditions are satisfied:

- $\mathcal{P}[\mathcal{A}]$, and
- For every i_2 such that $\mathcal{A} \leq i_2$ holds if $\mathcal{P}[i_2]$, then $\mathcal{P}[i_2+1]$.

The scheme $Int\ Ind\ Down$ deals with an integer $\mathcal A$ and a unary predicate $\mathcal P$, and states that:

For every i_0 such that $i_0 \leq \mathcal{A}$ holds $\mathcal{P}[i_0]$

provided the parameters meet the following requirements:

- $\mathcal{P}[\mathcal{A}]$, and
- For every i_2 such that $i_2 \leq \mathcal{A}$ holds if $\mathcal{P}[i_2]$, then $\mathcal{P}[i_2-1]$.

The scheme *Int Ind Full* deals with an integer \mathcal{A} and a unary predicate \mathcal{P} , and states that: For every i_0 holds $\mathcal{P}[i_0]$

³ The proposition (13) has been removed.

⁴ The propositions (24) and (25) have been removed.

provided the following requirements are met:

- $\mathcal{P}[\mathcal{A}]$, and
- For every i_2 such that $\mathcal{P}[i_2]$ holds $\mathcal{P}[i_2-1]$ and $\mathcal{P}[i_2+1]$.

The scheme *Int Min* deals with an integer \mathcal{A} and a unary predicate \mathcal{P} , and states that:

There exists i_0 such that $\mathcal{P}[i_0]$ and for every i_1 such that $\mathcal{P}[i_1]$ holds $i_0 \leq i_1$ provided the parameters meet the following conditions:

- For every i_1 such that $\mathcal{P}[i_1]$ holds $\mathcal{A} \leq i_1$, and
- There exists i_1 such that $\mathcal{P}[i_1]$.

The scheme *Int Max* deals with an integer \mathcal{A} and a unary predicate \mathcal{P} , and states that: There exists i_0 such that $\mathcal{P}[i_0]$ and for every i_1 such that $\mathcal{P}[i_1]$ holds $i_1 \leq i_0$

provided the following requirements are met:

- For every i_1 such that $\mathcal{P}[i_1]$ holds $i_1 \leq \mathcal{A}$, and
- There exists i_1 such that $\mathcal{P}[i_1]$.

Let us consider r. One can verify that sgn r is integer.

One can prove the following propositions:

$$(29)^5$$
 sgn $r = 1$ or sgn $r = -1$ or sgn $r = 0$.

(30)
$$|r| = r$$
 or $|r| = -r$.

Let us consider i_0 . One can check that $|i_0|$ is integer.

Let i_1, i_2, i_3 be integers. The predicate $i_1 \equiv i_2 \pmod{i_3}$ is defined by:

(Def. 3) There exists i_4 such that $i_3 \cdot i_4 = i_1 - i_2$.

The following propositions are true:

- $(32)^6$ $i_1 \equiv i_1 \pmod{i_2}$.
- (33) $i_1 \equiv 0 \pmod{i_1}$ and $0 \equiv i_1 \pmod{i_1}$.
- (34) $i_1 \equiv i_2 \pmod{1}$.
- (35) If $i_1 \equiv i_2 \pmod{i_3}$, then $i_2 \equiv i_1 \pmod{i_3}$.
- (36) If $i_1 \equiv i_2 \pmod{i_5}$ and $i_2 \equiv i_3 \pmod{i_5}$, then $i_1 \equiv i_3 \pmod{i_5}$.
- (37) If $i_1 \equiv i_2 \pmod{i_5}$ and $i_3 \equiv i_4 \pmod{i_5}$, then $i_1 + i_3 \equiv i_2 + i_4 \pmod{i_5}$.
- (38) If $i_1 \equiv i_2 \pmod{i_5}$ and $i_3 \equiv i_4 \pmod{i_5}$, then $i_1 i_3 \equiv i_2 i_4 \pmod{i_5}$.
- (39) If $i_1 \equiv i_2 \pmod{i_5}$ and $i_3 \equiv i_4 \pmod{i_5}$, then $i_1 \cdot i_3 \equiv i_2 \cdot i_4 \pmod{i_5}$.
- (40) $i_1 + i_2 \equiv i_3 \pmod{i_5}$ iff $i_1 \equiv i_3 i_2 \pmod{i_5}$.
- (41) If $i_4 \cdot i_5 = i_3$, then if $i_1 \equiv i_2 \pmod{i_3}$, then $i_1 \equiv i_2 \pmod{i_4}$.
- (42) $i_1 \equiv i_2 \pmod{i_5}$ iff $i_1 + i_5 \equiv i_2 \pmod{i_5}$.
- (43) $i_1 \equiv i_2 \pmod{i_5}$ iff $i_1 i_5 \equiv i_2 \pmod{i_5}$.
- (44) If $i_1 \le r$ and $r 1 < i_1$ and $i_2 \le r$ and $r 1 < i_2$, then $i_1 = i_2$.
- (45) If $r \le i_1$ and $i_1 < r+1$ and $r \le i_2$ and $i_2 < r+1$, then $i_1 = i_2$.

Let r be a real number. The functor |r| yielding an integer is defined as follows:

(Def. 4)
$$|r| \le r \text{ and } r - 1 < |r|$$
.

Next we state several propositions:

⁵ The propositions (27) and (28) have been removed.

⁶ The proposition (31) has been removed.

- $(47)^7$ |r| = r iff r is integer.
- (48) |r| < r iff r is not integer.
- $(50)^8$ |r| 1 < r and |r| < r + 1.
- (51) $|r| + i_0 = |r + i_0|$.
- (52) $r < \lfloor r \rfloor + 1$.

Let r be a real number. The functor $\lceil r \rceil$ yields an integer and is defined as follows:

(Def. 5)
$$r \leq \lceil r \rceil$$
 and $\lceil r \rceil < r + 1$.

We now state a number of propositions:

- $(54)^9$ $\lceil r \rceil = r \text{ iff } r \text{ is integer.}$
- (55) $r < \lceil r \rceil$ iff r is not integer.
- $(57)^{10}$ $r-1 < \lceil r \rceil$ and $r < \lceil r \rceil + 1$.
- (58) $\lceil r \rceil + i_0 = \lceil r + i_0 \rceil$.
- (59) $\lfloor r \rfloor = \lceil r \rceil$ iff r is integer.
- (60) $|r| < \lceil r \rceil$ iff *r* is not integer.
- (61) $|r| \le \lceil r \rceil$.
- $(62) \quad |\lceil r \rceil| = \lceil r \rceil.$
- (63) $\lfloor \lfloor r \rfloor \rfloor = \lfloor r \rfloor$.
- (64) $\lceil \lceil r \rceil \rceil = \lceil r \rceil$.
- $(65) \quad \lceil |r| \rceil = |r|.$
- (66) $|r| = \lceil r \rceil$ iff $|r| + 1 \neq \lceil r \rceil$.

Let r be a real number. The functor frac r is defined by:

(Def. 6)
$$\operatorname{frac} r = r - |r|$$
.

Let r be a real number. One can verify that frac r is real.

Let r be a real number. Then frac r is a real number.

We now state several propositions:

$$(68)^{11}$$
 $r = |r| + \text{frac } r$.

- (69) $\operatorname{frac} r < 1 \text{ and } 0 \le \operatorname{frac} r$.
- (70) $|\operatorname{frac} r| = 0.$
- (71) $\operatorname{frac} r = 0$ iff r is integer.
- (72) $0 < \operatorname{frac} r \operatorname{iff} r \operatorname{is} \operatorname{not integer}$.

Let i_1 , i_2 be integers. The functor $i_1 \div i_2$ yields an integer and is defined by:

(Def. 7)
$$i_1 \div i_2 = \lfloor \frac{i_1}{i_2} \rfloor$$
.

⁷ The proposition (46) has been removed.

⁸ The proposition (49) has been removed.

⁹ The proposition (53) has been removed.

¹⁰ The proposition (56) has been removed.

¹¹ The proposition (67) has been removed.

Let i_1 , i_2 be integers. The functor $i_1 \mod i_2$ yielding an integer is defined as follows:

$$(\text{Def. 8}) \quad i_1 \, \text{mod} \, i_2 = \left\{ \begin{array}{l} i_1 - (i_1 \div i_2) \cdot i_2, \text{ if } i_2 \neq 0, \\ 0, \text{ otherwise.} \end{array} \right.$$

Let i_1 , i_2 be integers. The predicate $i_1 \mid i_2$ is defined as follows:

(Def. 9) There exists i_3 such that $i_2 = i_1 \cdot i_3$.

Let us note that the predicate $i_1 \mid i_2$ is reflexive.

Next we state four propositions:

- (74)¹² For every real number r such that $r \neq 0$ holds $\lfloor \frac{r}{r} \rfloor = 1$.
- (75) For every integer *i* holds $i \div 0 = 0$.
- (76) For every integer i such that $i \neq 0$ holds $i \div i = 1$.
- (77) For every integer i holds $i \mod i = 0$.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [5] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/absvalue.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [7] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received February 7, 1990

Published January 2, 2004

¹² The proposition (73) has been removed.