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Summary. In the article the following concepts were introduced: the set of integers
(z) and its elements (integers), congruendgs=(i>(modis)), the ceiling and floor functors
([x] and |x]), also the fraction part of a real number (frac), the integer divisiongnd re-
mainder of integer division (mod). The following schemes were also included: the separation
scheme $epln}, the schemes of integer inductiomt_ Ind_Down, Int_Ind_Up, Int_Ind_Full),
the minimum (nt_Min) and maximum Ift_Max) schemes (the existence of minimum and
maximum integers enjoying a given property).

MML Identifier: INT_1.
WWW: http://mizar.org/JFM/Vol2/int_1.html

The articles([6], [[3], [[8], [[1], I2], [7], [4], and[[5] provide the notation and terminology for this
paper.

We adopt the following rulesx denotes a sek, ni, n; denote natural numbers, andenotes a
real number.

Let us observe that every element®fs complex.

7 can be characterized by the condition:

(Def. 1) xe€ Z iff there existsk such thatk = k or x = —k.
Leti be a number. We say thais integer if and only if:
(Def. 2) iis an element of.
One can check the following observations:
x there exists a real number which is integer,
x there exists a number which is integer, and
x every element oF is integer.

An integer is an integer number.
One can prove the following proposition

(SH r is an integer iff there existssuch that =k orr = —k.

Let us note that every natural number is integer and every number which is natural is also integer.
We now state the proposition

(11§ 1f xe Z, thenx e R.

1 The propositions (1)—(7) have been removed.
2 The propositions (9) and (10) have been removed.
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Let us observe that every number which is integer is also real.
We now state three propositions:

(12) xis an integer ifix € Z.
(14f Ncz.
(15) ZCR.

In the sequely, i1, iz, i3, i4, i5 denote integers.

Letiq, io be integers. Observe thiat+ i, is integer ands - i is integer.

Letip be an integer. Observe thatg is integer.

Letiq, i2 be integers. One can check tlat- i, is integer.

Let n be a natural number. Observe that is integer. Leti; be an integer. One can check the
following observations:

x i1+ nisinteger,
x i1-nis integer, and
x i —nisinteger.

Let us consideny, np. Observe tham; — ny is integer.
One can prove the following propositions:

(16) If0<ip, thenig is a natural number.

(17) Ifris aninteger, then+ 1 is an integer and— 1 is an integer.
(18) Ifip <ijy, theniy —iz is a natural number.

(19) Ifi1+k=ig,theniy <iy.

(20) Ifip <iy, thenip+1<ij.

(21) Ifip <0, thenip < -1

(22) ip-ip=1iffip=21andi;=1ori; =—-1andip = —-1.

(23) ip-ip=-1iffiy=—-1andip=1o0ri; =1andip =—-1.

6f] r—1<r.

In this article we present several logical schemes. The scBempiatconcerns a unary predicate
P, and states that:
There exists a subs¥tof Z such that for every integerholdsx € X iff P[X]
for all values of the parameters.
The schemént Ind Up deals with an integefl and a unary predicatg, and states that:
For everyig such thatq < ip holds?ig)
provided the following conditions are satisfied:
e P[4],and
e For everyi; such thatZ < i, holds if P[iy], then?[i, + 1].
The schemént Ind Downdeals with an integefl and a unary predicatg, and states that:
For everyig such thaip < 4 holds?Jig]
provided the parameters meet the following requirements:
e P[4],and
e For everyi; such thai, < 4 holds if P[iy], then?(i, — 1].
The schemént Ind Full deals with an integefl and a unary predicatg, and states that:
For everyig holds®][ig]

3 The proposition (13) has been removed.
4 The propositions (24) and (25) have been removed.
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provided the following requirements are met:
e P[4],and
e For everyiy such thatP[iz] holds?li, — 1] andP[i> + 1].
The schemént Min deals with an integefl and a unary predicatg, and states that:
There exist$g such thatP[ig] and for everyi; such thatP[i1] holdsig < i
provided the parameters meet the following conditions:
e For everyi; such that?P[i;] holds4 <y, and
e There exists$; such thatP[iq].
The schemént Max deals with an integefl and a unary predicatg, and states that:
There existsg such thatP[ig] and for everyi; such thatP[i1] holdsi; <ig
provided the following requirements are met:
e For everyi; such that?Pi;] holdsi; < 4, and
e There exists$; such thatP[iq].
Let us consider. One can verify that sgnis integer.
One can prove the following propositions:

(29E] sgnr =1 orsgmr =—1orsgm=0.
(30) |r|=ror|r|=-—r.

Let us considerp. One can check thaip| is integer.
Letis, i, i3 be integers. The predicaite= i,(modis) is defined by:

(Def. 3) There exists, such thaiz-ig =i1—ip.
The following propositions are true:
(32f] i1=i1(modiy).
(33) i1 =0(modi;) and O=iy(modiy).
(34) ip=iz(modl.
(35) Ifiyz =iz(modis), theniy = i1(modis).

(36) Ifiz =iz(modis) andi = iz(modis), thenii = iz(modis).

)
)
(37) Ifip =iz(modis) andiz = is(modis), thenii +i3 =iy +is(modis).
(38) Ifiz =iz(modis) andiz = is(modis), thenii —iz =iy —is(modis).
(39) Ifiz =iz(modis) andiz = is(modis), thenis -iz =iz -is(modis).
(40) i1 +iz =i3(modis) iff i1 =iz —iz(modis).
(41) |Ifig-is=is, thenifi; =iz(modis), theni; =ix(modia).
(42) ip=iz(modis) iff i1 +i5 = iz(modis).
(43) ip=iz(modis) iff i1 —i5 = iz(modis).
(44) Ifip<randr—1<ij;andi; <randr—1<ip, theni; =i».
(45) Ifr <ipandip <r+1andr <izandi, <r+1,theni; =i,

Letr be a real number. The functor| yielding an integer is defined as follows:

(Def.4) |r] <randr—1<|r].

Next we state several propositions:

5 The propositions (27) and (28) have been removed.
6 The proposition (31) has been removed.
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@47)] [r] =riff risinteger.
(48) |[r] <riff ris notinteger.
(50 Irl—1<rand|r| <r+1.
(51) |r|+io=[r+io].
(52) r<r]+1
Letr be a real number. The functdr] yields an integer and is defined as follows:
(Def.5) r<|r]and[r] <r+1
We now state a number of propositions:
54f] [r] =riff risinteger.
(55) r < [r]iff ris notinteger.
709 r—1<[r]andr < [r]+1.

(58) [r]+io=[r+io].

(59) |r]|=[r]iff risinteger.
(60) |r] < [r]iff ris notinteger.
(61) [r]<]r].

(62) [[r])=Ir].

63) [lrl]=1[r].

64) [Irf]=Ir].

(65) [lr]l=1r]

(66) [r]=[riff [r]+17][r].

Letr be areal number. The functor frats defined by:
(Def. 6) fraa =r—|r].

Letr be a real number. One can verify that fras real.
Letr be a real number. Then fraés a real number.
We now state several propositions:

68 r=|r]+fracr.
(69) fracr <1 and 0< fracr.
(70) |fracr| =0.
(71) fracr =0iff r is integer.
(72) O< fracr iff r is not integer.
Letis, i> be integers. The functaf =i, yields an integer and is defined by:

(Def. 7) i1+ip= L'—lj

" The proposition (46) has been removed.
8 The proposition (49) has been removed.
9 The proposition (53) has been removed.
10 The proposition (56) has been removed.
11 The proposition (67) has been removed.
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Letiq, io be integers. The functér modis yielding an integer is defined as follows:

. L il—(i1+i2)-i2, if iz;éo,
(Def. 8) iz modiz = { 0, otherwise.
Letiy, io be integers. The predicaitg| i- is defined as follows:
(Def. 9) There exists such thai; =iy -is3.

Let us note that the predicaite| i, is reflexive.
Next we state four propositions:

(74 For every real numbarsuch thar # 0 holds|{ | = 1.
(75) For every integerholdsi—~0=0.
(76) For every integerrsuch thaf # 0 holdsi ~i = 1.

(77) For every integerrholdsi modi = 0.
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