Solvable Groups

Katarzyna Zawadzka Warsaw University Białystok

Summary. The concept of solvable group is introduced. Some theorems concerning heirdom of solvability are proved.

MML Identifier: GRSOLV_1.

WWW: http://mizar.org/JFM/Vol6/grsolv_1.html

The articles [6], [12], [13], [2], [3], [7], [5], [4], [1], [9], [10], [8], and [11] provide the notation and terminology for this paper.

In this paper *i* denotes a natural number.

Let I_1 be a group. We say that I_1 is solvable if and only if the condition (Def. 1) is satisfied.

- (Def. 1) There exists a finite sequence F of elements of SubGr I_1 such that
 - (i) len F > 0,
 - (ii) $F(1) = \Omega_{(I_1)}$,
 - (iii) $F(\text{len } F) = \{1\}_{(I_1)}$, and
 - (iv) for every i such that $i \in \text{dom } F$ and $i+1 \in \text{dom } F$ and for all strict subgroups G_1 , G_2 of I_1 such that $G_1 = F(i)$ and $G_2 = F(i+1)$ holds G_2 is a strict normal subgroup of G_1 and for every normal subgroup N of G_1 such that $N = G_2$ holds $G_1 \setminus N$ is commutative.

One can verify that there exists a group which is solvable and strict. The following propositions are true:

- (1) Let G be a strict group and H, F_1 , F_2 be strict subgroups of G. Suppose F_1 is a normal subgroup of F_2 . Then $F_1 \cap H$ is a normal subgroup of $F_2 \cap H$.
- (2) Let G be a strict group, F_2 be a strict subgroup of G, F_1 be a strict normal subgroup of F_2 , and a, b be elements of F_2 . Then $a \cdot F_1 \cdot (b \cdot F_1) = (a \cdot b) \cdot F_1$.
- (3) Let G be a strict group, H, F_2 be strict subgroups of G, F_1 be a strict normal subgroup of F_2 , and G_2 be a strict subgroup of G. Suppose $G_2 = H \cap F_2$. Let G_1 be a normal subgroup of G_2 . Suppose $G_1 = H \cap F_1$. Then there exists a subgroup G_3 of F_2/F_1 such that G_2/G_1 and G_3 are isomorphic.
- (4) Let G be a strict group, H, F_2 be strict subgroups of G, F_1 be a strict normal subgroup of F_2 , and G_2 be a strict subgroup of G. Suppose $G_2 = F_2 \cap H$. Let G_1 be a normal subgroup of G_2 . Suppose $G_1 = F_1 \cap H$. Then there exists a subgroup G_3 of F_2/F_1 such that G_2/G_1 and G_3 are isomorphic.
- (5) For every solvable strict group G holds every strict subgroup of G is solvable.

- (6) Let G be a strict group. Given a finite sequence F of elements of SubGr G such that
- (i) len F > 0,
- (ii) $F(1) = \Omega_G$,
- (iii) $F(\text{len } F) = \{1\}_G$, and
- (iv) for every i such that $i \in \text{dom } F$ and $i+1 \in \text{dom } F$ and for all strict subgroups G_1 , G_2 of G such that $G_1 = F(i)$ and $G_2 = F(i+1)$ holds G_2 is a strict normal subgroup of G_1 and for every normal subgroup N of G_1 such that $N = G_2$ holds $G_1 = G_2$ holds $G_2 = G_3 = G_4$ for every normal subgroup.

Then *G* is solvable.

- (7) Every strict commutative group is strict and solvable.
- Let G, H be strict groups, let g be a homomorphism from G to H, and let A be a subgroup of G. The functor $g \mid A$ yielding a homomorphism from A to H is defined as follows:
- (Def. 2) $g \upharpoonright A = g \upharpoonright$ the carrier of A.
- Let G, H be strict groups, let g be a homomorphism from G to H, and let A be a subgroup of G. The functor $g^{\circ}A$ yields a strict subgroup of H and is defined as follows:
- (Def. 3) $g^{\circ}A = \operatorname{Im}(g \upharpoonright A)$.

The following propositions are true:

- (8) Let G, H be strict groups, g be a homomorphism from G to H, and A be a subgroup of G. Then $rrg(g \upharpoonright A) = g^{\circ}$ (the carrier of A).
- (9) Let G, H be strict groups, g be a homomorphism from G to H, and A be a strict subgroup of G. Then the carrier of $g^{\circ}A = g^{\circ}$ (the carrier of A).
- (10) Let G, H be strict groups, h be a homomorphism from G to H, and A be a strict subgroup of G. Then $Im(h \mid A)$ is a strict subgroup of Im h.
- (11) Let G, H be strict groups, h be a homomorphism from G to H, and A be a strict subgroup of G. Then h $^{\circ}A$ is a strict subgroup of Im h.
- (12) For all strict groups G, H and for every homomorphism h from G to H holds $h^{\circ}(\{1\}_G) = \{1\}_H$ and $h^{\circ}(\Omega_G) = \Omega_{\operatorname{Im}h}$.
- (13) Let G, H be strict groups, h be a homomorphism from G to H, and A, B be strict subgroups of G. If A is a subgroup of B, then $h^{\circ}A$ is a subgroup of $h^{\circ}B$.
- (14) Let G, H be strict groups, h be a homomorphism from G to H, A be a strict subgroup of G, and a be an element of G. Then $h(a) \cdot h^{\circ}A = h^{\circ}(a \cdot A)$ and $h^{\circ}A \cdot h(a) = h^{\circ}(A \cdot a)$.
- (15) Let G, H be strict groups, h be a homomorphism from G to H, and A, B be subsets of G. Then $h^{\circ}A \cdot h^{\circ}B = h^{\circ}(A \cdot B)$.
- (16) Let G, H be strict groups, h be a homomorphism from G to H, and A, B be strict subgroups of G. Suppose A is a strict normal subgroup of B. Then $h^{\circ}A$ is a strict normal subgroup of $h^{\circ}B$
- (17) Let G, H be strict groups and h be a homomorphism from G to H. If G is a solvable group, then Im h is solvable.

REFERENCES

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [5] Dariusz Surowik. Cyclic groups and some of their properties part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/gr_cy_1.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [7] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [8] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/group_3.html.
- [9] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [10] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_2.html.
- [11] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/group_6.html.
- [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received October 23, 1994

Published January 2, 2004