Introduction to Go-Board — Part II

Jarosław Kotowicz Warsaw University Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. In article we define Go-board determined by finite sequence of points from topological space \mathcal{E}_T^2 . A few facts about this notation are proved.

MML Identifier: GOBOARD2.

WWW: http://mizar.org/JFM/Vol4/goboard2.html

The articles [14], [6], [17], [3], [15], [2], [18], [5], [4], [7], [13], [1], [11], [16], [10], [8], [9], and [12] provide the notation and terminology for this paper.

1. REAL NUMBERS PRELIMINARIES

For simplicity, we adopt the following convention: f, f_1 , f_2 , g denote finite sequences of elements of \mathcal{E}^2_T , v, v_1 , v_2 denote finite sequences of elements of \mathbb{R} , n, m, i, j, k denote natural numbers, and G denotes a Go-board.

The scheme PiLambdaD deals with a non empty set \mathcal{A} , a natural number \mathcal{B} , and a unary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

There exists a finite sequence g of elements of \mathcal{A} such that len $g = \mathcal{B}$ and for every n such that $n \in \text{dom } g \text{ holds } g_n = \mathcal{F}(n)$

for all values of the parameters.

The following proposition is true

- (1) For every finite subset R of \mathbb{R} such that $R \neq \emptyset$ holds R is upper bounded and $\sup R \in R$ and R is lower bounded and $\inf R \in R$.
 - 2. Properties of Finite Sequences of Points from \mathcal{E}^2_T

Next we state a number of propositions:

- (3) For every finite sequence f holds $1 \le n$ and $n+1 \le len f$ iff $n \in dom f$ and $n+1 \in dom f$.
- (4) For every finite sequence f holds $1 \le n$ and $n+2 \le \text{len } f$ iff $n \in \text{dom } f$ and $n+1 \in \text{dom } f$ and $n+2 \in \text{dom } f$.
- (5) Let D be a non empty set, f_1 , f_2 be finite sequences of elements of D, and given n. If $1 \le n$ and $n \le \text{len } f_2$, then $(f_1 \cap f_2)_{n+\text{len } f_1} = (f_2)_n$.
- (6) If for all n, m such that m > n + 1 and $n \in \text{dom } f$ and $n + 1 \in \text{dom } f$ and $m \in \text{dom } f$ and $m + 1 \in \text{dom } f$ holds $\mathcal{L}(f, n)$ misses $\mathcal{L}(f, m)$, then f is s.n.c..

1

¹ The proposition (2) has been removed.

- (7) If f is unfolded, s.n.c., and one-to-one and $f_{\text{len } f} \in \mathcal{L}(f, i)$ and $i \in \text{dom } f$ and $i + 1 \in \text{dom } f$, then i + 1 = len f.
- (8) If $k \neq 0$ and len f = k + 1, then $\widetilde{\mathcal{L}}(f) = \widetilde{\mathcal{L}}(f \upharpoonright k) \cup \mathcal{L}(f, k)$.
- (9) If 1 < k and len f = k + 1 and f is unfolded and s.n.c., then $\widetilde{\mathcal{L}}(f \upharpoonright k) \cap \mathcal{L}(f, k) = \{f_k\}$.
- (10) If len $f_1 < n$ and $n+1 \le \text{len}(f_1 \cap f_2)$ and $m+\text{len } f_1 = n$, then $\mathcal{L}(f_1 \cap f_2, n) = \mathcal{L}(f_2, m)$.
- (11) $\widetilde{\mathcal{L}}(f) \subseteq \widetilde{\mathcal{L}}(f \cap g)$.
- (12) If f is s.n.c., then $f \mid i$ is s.n.c..
- (13) If f_1 is special and if f_2 is special and if $((f_1)_{\text{len }f_1})_1 = ((f_2)_1)_1$ or $((f_1)_{\text{len }f_1})_2 = ((f_2)_1)_2$, then $f_1 \cap f_2$ is special.
- (14) If $f \neq \emptyset$, then **X**-coordinate $(f) \neq \emptyset$.
- (15) If $f \neq \emptyset$, then **Y**-coordinate(f) $\neq \emptyset$.

Let f be a non empty finite sequence of elements of \mathcal{E}^2_T . One can check that **X**-coordinate(f) is non empty and **Y**-coordinate(f) is non empty.

Next we state several propositions:

- (16) Suppose f is special. Let given n. Suppose $n \in \text{dom } f$ and $n+1 \in \text{dom } f$. Let given i, j, m, k. Suppose $\langle i, j \rangle \in \text{the indices of } G$ and $\langle m, k \rangle \in \text{the indices of } G$ and $f_n = G \circ (i, j)$ and $f_{n+1} = G \circ (m, k)$. Then i = m or k = j.
- (17) Suppose that
 - (i) for every n such that $n \in \text{dom } f$ there exist i, j such that $\langle i, j \rangle \in \text{the indices of } G$ and $f_n = G \circ (i, j)$,
- (ii) f is special, and
- (iii) for every n such that $n \in \text{dom } f$ and $n+1 \in \text{dom } f$ holds $f_n \neq f_{n+1}$. Then there exists g such that g is a sequence which elements belong to G and $\widetilde{\mathcal{L}}(f) = \widetilde{\mathcal{L}}(g)$ and $g_1 = f_1$ and $g_{\text{len } g} = f_{\text{len } f}$ and $\text{len } f \leq \text{len } g$.
- (18) If v is increasing, then for all n, m such that $n \in \text{dom } v$ and $m \in \text{dom } v$ and $n \le m$ holds $v(n) \le v(m)$.
- (19) If v is increasing, then for all n, m such that $n \in \text{dom } v$ and $m \in \text{dom } v$ and $n \neq m$ holds $v(n) \neq v(m)$.
- (20) If v is increasing and $v_1 = v \upharpoonright \operatorname{Seg} n$, then v_1 is increasing.
- (21) For every v there exists v_1 such that $\operatorname{rng} v_1 = \operatorname{rng} v$ and $\operatorname{len} v_1 = \operatorname{card} \operatorname{rng} v$ and v_1 is increasing.
- (22) For all v_1 , v_2 such that $len v_1 = len v_2$ and $rng v_1 = rng v_2$ and v_1 is increasing and v_2 is increasing holds $v_1 = v_2$.

3. GO-BOARD DETERMINED BY FINITE SEQUENCE

Let v_1 , v_2 be increasing finite sequences of elements of \mathbb{R} . Let us assume that $v_1 \neq \emptyset$ and $v_2 \neq \emptyset$. The Go-board of v_1 , v_2 yields a matrix over \mathcal{E}_T^2 and is defined by the conditions (Def. 1).

- (Def. 1)(i) len the Go-board of v_1 , $v_2 = \text{len } v_1$,
 - (ii) width the Go-board of v_1 , $v_2 = \text{len } v_2$, and
 - (iii) for all n, m such that $\langle n, m \rangle \in$ the indices of the Go-board of $v_1, v_2 \circ (n, m) = [v_1(n), v_2(m)]$.

Let v_1 , v_2 be non empty increasing finite sequences of elements of \mathbb{R} . Observe that the Go-board of v_1 , v_2 is non empty yielding, line **X**-constant, column **Y**-constant, line **Y**-increasing, and column **X**-increasing.

Let us consider v. The functor Inc(v) yields an increasing finite sequence of elements of \mathbb{R} and is defined by:

(Def. 2) $\operatorname{rngInc}(v) = \operatorname{rng} v$ and $\operatorname{lenInc}(v) = \operatorname{card}\operatorname{rng} v$.

Let f be a non empty finite sequence of elements of \mathcal{E}_T^2 . The Go-board of f yields a matrix over \mathcal{E}_T^2 and is defined by:

- (Def. 3) The Go-board of f = the Go-board of $Inc(\mathbf{X}\text{-coordinate}(f))$, $Inc(\mathbf{Y}\text{-coordinate}(f))$.
 - The following proposition is true
 - (23) If $v \neq \emptyset$, then $Inc(v) \neq \emptyset$.

Let v be a non empty finite sequence of elements of \mathbb{R} . One can check that $\operatorname{Inc}(v)$ is non empty. Let f be a non empty finite sequence of elements of \mathcal{E}^2_T . Note that the Go-board of f is non empty yielding, line **X**-constant, column **Y**-constant, line **Y**-increasing, and column **X**-increasing. In the sequel f is a non empty finite sequence of elements of \mathcal{E}^2_T . One can prove the following propositions:

- (24) lenthe Go-board of $f = \operatorname{card}\operatorname{rng}\mathbf{X}$ -coordinate(f) and width the Go-board of $f = \operatorname{card}\operatorname{rng}\mathbf{Y}$ -coordinate(f).
- (25) Let given n. Suppose $n \in \text{dom } f$. Then there exist i, j such that $\langle i, j \rangle \in \text{the indices of the Go-board of } f$ and $f_n = \text{the Go-board of } f \circ (i, j)$.
- (26) If $n \in \text{dom } f$ and for every m such that $m \in \text{dom } f$ holds $(\mathbf{X}\text{-coordinate}(f))(n) \le (\mathbf{X}\text{-coordinate}(f))(m)$, then $f_n \in \text{rng Line}(\text{the Go-board of } f, 1)$.
- (27) If $n \in \text{dom } f$ and for every m such that $m \in \text{dom } f$ holds $(\mathbf{X}\text{-coordinate}(f))(m) \le (\mathbf{X}\text{-coordinate}(f))(n)$, then $f_n \in \text{rng Line}(\text{the Go-board of } f)$, len the Go-board of f).
- (28) If $n \in \text{dom } f$ and for every m such that $m \in \text{dom } f$ holds $(\mathbf{Y}\text{-coordinate}(f))(n) \le (\mathbf{Y}\text{-coordinate}(f))(m)$, then $f_n \in \text{rng}(\text{(the Go-board of } f)_{\square,1})$.
- (29) If $n \in \text{dom } f$ and for every m such that $m \in \text{dom } f$ holds $(\mathbf{Y}\text{-coordinate}(f))(m) \le (\mathbf{Y}\text{-coordinate}(f))(n)$, then $f_n \in \text{rng}((\text{the Go-board of } f)_{\square,\text{width the Go-board of } f})$.

REFERENCES

- $[1] \begin{tabular}{l} Grzegorz Bancerek. Cardinal numbers. {\it Journal of Formalized Mathematics}, 1, 1989. $$ $$ $$ http://mizar.org/JFM/Vol1/card_1.html. $$ $$$
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- $[7] \ \ Agata \ Darmochwał. \ Finite sets. \ \textit{Journal of Formalized Mathematics}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/finset_1.html}.$
- [8] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \$\mathcal{E}_{T}^{2}\$. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreall.html.

- [10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/matrix_1.html.
- [11] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seg_4.html.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboardl.html.
- [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [15] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [16] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.
- [17] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [18] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.

Received August 24, 1992

Published January 2, 2004