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Summary. In article we define Go-board determined by finite sequence of points from
topological spacés%. A few facts about this notation are proved.

MML Identifier: GOBOARD2.

WWW: http://mizar.org/JFM/Vol4/goboard2.html

The articles([14],[16],11171,[[8],[[15],12],118],[15], 141, (171, ([18], [[1], [11],T15],[1100],18],[10], and
[12] provide the notation and terminology for this paper.

1. REAL NUMBERSPRELIMINARIES

For simplicity, we adopt the following conventioffi; f1, f», g denote finite sequences of elements

of T;% Vv, V1, V2 denote finite sequences of element®Roh, m, i, j, k denote natural numbers, and
G denotes a Go-board.

The schem@®iLambdaDdeals with a non empty set, a natural numbeB, and a unary functor
F yielding an element of, and states that:

There exists a finite sequengef elements of1 such that leg = B and for everyn
such than € domg holdsgn = ¥ (n)
for all values of the parameters.
The following proposition is true

(1) For every finite subsé® of R such thaR £ 0 holdsR is upper bounded and sRpe Rand
Ris lower bounded and il € R

2. PROPERTIES OFFINITE SEQUENCES OFPOINTS FROME%
Next we state a number of propositions:

(3H For every finite sequenceholds 1< nandn+ 1 <lenf iff n€ domf andn+ 1 € domf.

(4) For every finite sequendeholds 1< nandn+2 <lenf iff n€ domf andn+ 1 € domf
andn+ 2 € domf.

(5) LetD be a non empty sef, f, be finite sequences of elementdifand givem. If 1 <n
andn < lenfy, then(fl“ f2)n+|enfl = (f2)n.

(6) If for all n, msuch thatim> n+ 1 andn € domf andn+ 1 € domf andm € domf and
m+ 1 € domf holds L(f,n) misses.(f,m), thenf is s.n.c..

1 The proposition (2) has been removed.
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(7) If f isunfolded, s.n.c., and one-to-one dipgls € L(f,i) andi € domf andi+1 € domf,
theni+1=lenf.

(8) Ifk£0andlenf =k+1, thenZ(f)=L(f[k)UL(f k).

(9) If1<kandlenf =k+ 1 andf is unfolded and s.n.c., thef( f [k) N £(f,k) = { fi}.
(10) Iflenf; < nandn+1<len(f;~ fy) andm+lenf; =n, thenL(f1 ™ fo,n) = L(f, m).
11) L(f)C L(f"g).

(12) If fiss.n.c., therf|iis s.n.c..

(13) If f1 is special and iff; is special and if(f1)ient,)1 = ((f2)1)1 or ((fo)lent,)2 = ((f2)1)2,
thenf, ™ fy is special.

(14) If f #£0, thenX-coordinaté¢f) # 0.
(15) |If f £ 0, thenY-coordinatéf) # 0.

Let f be a non empty finite sequence of eIementﬁ)fOne can check that-coordinatéf) is
non empty and/-coordinatéf ) is non empty.
Next we state several propositions:

(16) Supposd is special. Let givem. Supposen € domf andn+ 1 € domf. Let giveni, j,
m, k. Supposdi, j) € the indices ofG and(m, k) € the indices ofG and f, = Go (i, j) and
far1 = Go(mk). Theni=mork=j.

(17) Suppose that

(i) for everyn such thatn € domf there exist, j such that(i, j} € the indices ofG and
fn =Go (Ia J)a

(i) fisspecial, and

(iif)  for every n such thah € domf andn+ 1 € domf holds f, # ;1.
Then there existg such thaty is a sequence which elements belongstand £(f) = £(g)
andg; = f; andgieng = fien and lenf < leng.

(18) If vis increasing, then for ath, m such thath € domv andm € domv andn < m holds
v(n) <v(m).

(19) If vis increasing, then for ath, m such thatn € domv andm € domv andn # m holds
v(n) # v(m).

(20) If visincreasing anél; = v| Segn, thenv, is increasing.

(21) For every there existy; such that rngy = rngv and len; = cardrngr andv; is increas-
ing.

(22) For allv, v» such that ler; = lenv, and rngis = rngv, andvy is increasing andys is
increasing holds; = vs.

3. GO-BOARD DETERMINED BY FINITE SEQUENCE

Let v4, v2 be increasing finite sequences of element® ol et us assume thag # 0 andv; # 0.
The Go-board of, v, yields a matrix overE% and is defined by the conditions (Def. 1).

(Def. 1)()) lenthe Go-board of, v = lenvy,
(i)  widththe Go-board of/1, vo = lenv,, and

(iiiy  for all n, msuch thatn, m) € the indices of the Go-board of, v» holds the Go-board of
V1, V20 (n,m) = [vi(n), v2(m)].
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Let vy, v2 be non empty increasing finite sequences of elemeris Gfbserve that the Go-board
of vq, vz is non empty yielding, liné&X-constant, columtY -constant, liney -increasing, and column
X-increasing.

Let us considev. The functor In¢v) yields an increasing finite sequence of element® ahd
is defined by:

(Def. 2) rngindv) =rngv and leningv) = cardrng..

Let f be a non empty finite sequence of eIementﬁéfThe Go-board of yields a matrix over
£2 and is defined by:

(Def. 3) The Go-board of = the Go-board of In¢X-coordinatéf)), Inc(Y-coordinatéf)).

The following proposition is true
(23) Ifv£0, then Indqv) £ 0.

Let v be a non empty finite sequence of element® 0One can check that l(e) is non empty.

Let f be a non empty finite sequence of eIementféf Note that the Go-board df is non
empty yielding, lineX-constant, columiY -constant, liner -increasing, and columX-increasing.

In the sequef is a non empty finite sequence of eIementféf

One can prove the following propositions:

(24) lenthe Go-board off = cardrngX-coordinat¢f) and widththe Go-board off =
cardrngy -coordinatéf).

(25) Let givenn. Supposen € domf. Then there exist, j such tha(i, j} € the indices of the
Go-board off and f, = the Go-board of o (i, j).

(26) If n € domf and for everym such thatm € domf holds (X-coordinatéf))(n) <
(X-coordinaté¢f))(m), thenf, € rngLinethe Go-board of, 1).

(27) If n € domf and for everym such thatm € domf holds (X-coordinat¢f))(m) <
(X-coordinatéf))(n), thenf, € rngLinethe Go-board off, lenthe Go-board of).

(28) If n € domf and for everym such thatm € domf holds (Y-coordinat¢f))(n) <
(Y-coordinatéf))(m), then f, € rng((the Go-board off ) 1).
(29) If n € domf and for everym such thatm € domf holds (Y-coordinat¢f))(m) <

(Y-coordinatéf))(n), thenf, € rng((the Go-board of ) widththe Go-board off )-
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