Sum and Product of Finite Sequences of Elements of a Field

Katarzyna Zawadzka Warsaw University Białystok

Summary. This article is concerned with a generalization of concepts introduced in [11], i.e., there are introduced the sum and the product of finite number of elements of any field. Moreover, the product of vectors which yields a vector is introduced. According to [11], some operations on *i*-tuples of elements of field are introduced: addition, subtraction, and complement. Some properties of the sum and the product of finite number of elements of a field are present.

MML Identifier: FVSUM_1.

WWW: http://mizar.org/JFM/Vol4/fvsum_1.html

The articles [18], [22], [19], [2], [23], [5], [7], [6], [3], [4], [16], [21], [17], [9], [8], [10], [15], [14], [1], [12], [20], and [13] provide the notation and terminology for this paper.

1. AUXILIARY THEOREMS

In this paper i, j, k denote natural numbers.

One can prove the following propositions:

- $(2)^{1}$ For every Abelian non empty loop structure K holds the addition of K is commutative.
- (3) For every add-associative non empty loop structure K holds the addition of K is associative.
- (4) For every commutative non empty groupoid K holds the multiplication of K is commutative.
- (6)² Let K be a commutative left unital non empty double loop structure. Then $\mathbf{1}_K$ is a unity w.r.t. the multiplication of K.
- (7) For every commutative left unital non empty double loop structure K holds $\mathbf{1}_{\text{the multiplication of }K} = \mathbf{1}_K$.
- (8) For every left zeroed right zeroed non empty loop structure K holds 0_K is a unity w.r.t. the addition of K.
- (9) For every left zeroed right zeroed non empty loop structure K holds $\mathbf{1}_{\text{the addition of }K} = 0_K$.
- (10) For every left zeroed right zeroed non empty loop structure *K* holds the addition of *K* has a unity.

1

¹ The proposition (1) has been removed.

² The proposition (5) has been removed.

- (11) For every commutative left unital non empty double loop structure *K* holds the multiplication of *K* has a unity.
- (12) Let K be a distributive non empty double loop structure. Then the multiplication of K is distributive w.r.t. the addition of K.

Let K be a non empty groupoid and let a be an element of K. The functor \cdot^a yielding a unary operation on the carrier of K is defined by:

(Def. 1) $\cdot^a = (\text{the multiplication of } K)^{\circ}(a, \text{id}_{\text{the carrier of } K}).$

Let K be a non empty loop structure. The functor $-_K$ yielding a binary operation on the carrier of K is defined as follows:

(Def. 2) $-_K = (\text{the addition of } K) \circ (\text{id}_{\text{the carrier of } K}, \text{comp } K).$

We now state several propositions:

- (14)³ For every non empty loop structure K and for all elements a_1 , a_2 of K holds $-K(a_1, a_2) = a_1 a_2$.
- (15) Let K be a distributive non empty double loop structure and a be an element of K. Then \cdot^a is distributive w.r.t. the addition of K.
- (16) Let K be a left zeroed right zeroed add-associative right complementable non empty loop structure. Then comp K is an inverse operation w.r.t. the addition of K.
- (17) Let K be a left zeroed right zeroed add-associative right complementable non empty loop structure. Then the addition of K has an inverse operation.
- (18) Let K be a left zeroed right zeroed add-associative right complementable non empty loop structure. Then the inverse operation w.r.t. the addition of K = comp K.
- (19) Let K be a right zeroed add-associative right complementable Abelian non empty loop structure. Then comp K is distributive w.r.t. the addition of K.

2. Some operations on i-tuples

Let K be a non empty loop structure and let p_1 , p_2 be finite sequences of elements of the carrier of K. The functor $p_1 + p_2$ yielding a finite sequence of elements of the carrier of K is defined by:

(Def. 3) $p_1 + p_2 = (\text{the addition of } K)^{\circ}(p_1, p_2).$

One can prove the following proposition

(21)⁴ Let K be a non empty loop structure, p_1 , p_2 be finite sequences of elements of the carrier of K, a_1 , a_2 be elements of K, and i be a natural number. If $i \in \text{dom}(p_1 + p_2)$ and $a_1 = p_1(i)$ and $a_2 = p_2(i)$, then $(p_1 + p_2)(i) = a_1 + a_2$.

Let us consider i, let K be a non empty loop structure, and let R_1 , R_2 be elements of (the carrier of K) i . Then $R_1 + R_2$ is an element of (the carrier of K) i .

We now state several propositions:

- (22) Let K be a non empty loop structure, a_1 , a_2 be elements of K, and R_1 , R_2 be elements of (the carrier of K)ⁱ. If $j \in \text{Seg } i$ and $a_1 = R_1(j)$ and $a_2 = R_2(j)$, then $(R_1 + R_2)(j) = a_1 + a_2$.
- (23) Let K be a non empty loop structure and p be a finite sequence of elements of the carrier of K. Then $\varepsilon_{\text{(the carrier of }K)} + p = \varepsilon_{\text{(the carrier of }K)}$ and $p + \varepsilon_{\text{(the carrier of }K)} = \varepsilon_{\text{(the carrier of }K)}$.

³ The proposition (13) has been removed.

⁴ The proposition (20) has been removed.

- (24) For every non empty loop structure K and for all elements a_1 , a_2 of K holds $\langle a_1 \rangle + \langle a_2 \rangle = \langle a_1 + a_2 \rangle$.
- (25) For every non empty loop structure K and for all elements a_1 , a_2 of K holds $i \mapsto a_1 + i \mapsto a_2 = i \mapsto (a_1 + a_2)$.
- (26) For every Abelian non empty loop structure K and for all elements R_1 , R_2 of (the carrier of K)ⁱ holds $R_1 + R_2 = R_2 + R_1$.
- (27) Let K be an add-associative non empty loop structure and R_1 , R_2 , R_3 be elements of (the carrier of K)ⁱ. Then $R_1 + (R_2 + R_3) = (R_1 + R_2) + R_3$.
- (28) Let K be an Abelian left zeroed right zeroed non empty loop structure and R be an element of (the carrier of K) i . Then $R + i \mapsto 0_K = R$ and $R = i \mapsto 0_K + R$.

Let K be a non empty loop structure and let p be a finite sequence of elements of the carrier of K. The functor -p yields a finite sequence of elements of the carrier of K and is defined by:

(Def. 4)
$$-p = \operatorname{comp} K \cdot p$$
.

In the sequel K is a non empty loop structure, a is an element of K, p is a finite sequence of elements of the carrier of K, and R is an element of (the carrier of K)ⁱ.

One can prove the following proposition

$$(30)^5$$
 If $i \in \text{dom}(-p)$ and $a = p(i)$, then $(-p)(i) = -a$.

Let us consider i, let K be a non empty loop structure, and let R be an element of (the carrier of K) i . Then -R is an element of (the carrier of K) i .

The following propositions are true:

- (31) If $j \in \operatorname{Seg} i$ and a = R(j), then (-R)(j) = -a.
- (32) $-\varepsilon_{\text{(the carrier of }K)} = \varepsilon_{\text{(the carrier of }K)}$.
- (33) $-\langle a \rangle = \langle -a \rangle$.
- (34) $-i \mapsto a = i \mapsto (-a)$.
- (35) Let K be an Abelian right zeroed add-associative right complementable non empty loop structure and R be an element of (the carrier of K) i . Then $R+-R=i\mapsto 0_K$ and $-R+R=i\mapsto 0_K$.

In the sequel K is a left zeroed right zeroed add-associative right complementable non empty loop structure and R, R_1 , R_2 are elements of (the carrier of K) i .

Next we state several propositions:

- (36) If $R_1 + R_2 = i \mapsto 0_K$, then $R_1 = -R_2$ and $R_2 = -R_1$.
- (37) --R = R.
- (38) If $-R_1 = -R_2$, then $R_1 = R_2$.
- (39) Let K be an Abelian right zeroed add-associative right complementable non empty loop structure and R, R_1 , R_2 be elements of (the carrier of K) i . If $R_1 + R = R_2 + R$ or $R_1 + R = R + R_2$, then $R_1 = R_2$.
- (40) Let K be an Abelian right zeroed add-associative right complementable non empty loop structure and R_1 , R_2 be elements of (the carrier of K)ⁱ. Then $-(R_1 + R_2) = -R_1 + -R_2$.

Let K be a non empty loop structure and let p_1 , p_2 be finite sequences of elements of the carrier of K. The functor $p_1 - p_2$ yielding a finite sequence of elements of the carrier of K is defined by:

⁵ The proposition (29) has been removed.

(Def. 5)
$$p_1 - p_2 = (-K)^{\circ}(p_1, p_2).$$

For simplicity, we use the following convention: K denotes a non empty loop structure, a_1 , a_2 denote elements of K, p_1 , p_2 denote finite sequences of elements of the carrier of K, and R_1 , R_2 denote elements of (the carrier of K)ⁱ.

The following proposition is true

$$(42)^6$$
 If $i \in \text{dom}(p_1 - p_2)$ and $a_1 = p_1(i)$ and $a_2 = p_2(i)$, then $(p_1 - p_2)(i) = a_1 - a_2$.

Let us consider i, let K be a non empty loop structure, and let R_1 , R_2 be elements of (the carrier of K) i . Then $R_1 - R_2$ is an element of (the carrier of K) i .

One can prove the following propositions:

(43) If
$$j \in \text{Seg } i$$
 and $a_1 = R_1(j)$ and $a_2 = R_2(j)$, then $(R_1 - R_2)(j) = a_1 - a_2$.

(44)
$$\varepsilon_{\text{(the carrier of }K)} - p_1 = \varepsilon_{\text{(the carrier of }K)}$$
 and $p_1 - \varepsilon_{\text{(the carrier of }K)} = \varepsilon_{\text{(the carrier of }K)}$.

$$(45) \quad \langle a_1 \rangle - \langle a_2 \rangle = \langle a_1 - a_2 \rangle.$$

(46)
$$i \mapsto a_1 - i \mapsto a_2 = i \mapsto (a_1 - a_2).$$

(47)
$$R_1 - R_2 = R_1 + -R_2$$
.

- (48) Let K be an add-associative right complementable left zeroed right zeroed non empty loop structure and R be an element of (the carrier of K) i . Then $R i \mapsto 0_K = R$.
- (49) Let K be an Abelian left zeroed right zeroed non empty loop structure and R be an element of (the carrier of K)ⁱ. Then $i \mapsto 0_K R = -R$.
- (50) Let K be a left zeroed right zeroed add-associative right complementable non empty loop structure and R_1 , R_2 be elements of (the carrier of K)ⁱ. Then $R_1 R_2 = R_1 + R_2$.

We adopt the following convention: K is an Abelian right zeroed add-associative right complementable non empty loop structure and R, R_1 , R_2 , R_3 are elements of (the carrier of K) i .

The following propositions are true:

(51)
$$-(R_1-R_2)=R_2-R_1$$
.

(52)
$$-(R_1-R_2)=-R_1+R_2$$
.

$$(53) \quad R - R = i \mapsto 0_K.$$

(54) If
$$R_1 - R_2 = i \mapsto 0_K$$
, then $R_1 = R_2$.

(55)
$$R_1 - R_2 - R_3 = R_1 - (R_2 + R_3).$$

(56)
$$R_1 + (R_2 - R_3) = (R_1 + R_2) - R_3$$
.

(57)
$$R_1 - (R_2 - R_3) = (R_1 - R_2) + R_3.$$

(58)
$$R_1 = (R_1 + R) - R$$
.

(59)
$$R_1 = (R_1 - R) + R$$
.

For simplicity, we follow the rules: K denotes a non empty groupoid, a, a', a_1 , a_2 denote elements of K, p denotes a finite sequence of elements of the carrier of K, and R denotes an element of (the carrier of K) i .

The following two propositions are true:

- (60) For all elements a, b of K holds ((the multiplication of K) $^{\circ}(a, id_{the \ carrier \ of \ K}))(b) = a \cdot b$.
- (61) For all elements a, b of K holds $\cdot^a(b) = a \cdot b$.

⁶ The proposition (41) has been removed.

Let K be a non empty groupoid, let p be a finite sequence of elements of the carrier of K, and let a be an element of K. The functor $a \cdot p$ yielding a finite sequence of elements of the carrier of K is defined as follows:

(Def. 6)
$$a \cdot p = \cdot^a \cdot p$$
.

One can prove the following proposition

(62) If
$$i \in \text{dom}(a \cdot p)$$
 and $a' = p(i)$, then $(a \cdot p)(i) = a \cdot a'$.

Let us consider i, let K be a non empty groupoid, let R be an element of (the carrier of K) i , and let a be an element of K. Then $a \cdot R$ is an element of (the carrier of K) i .

Next we state several propositions:

- (63) If $j \in \text{Seg } i$ and a' = R(j), then $(a \cdot R)(j) = a \cdot a'$.
- (64) $a \cdot \varepsilon_{\text{(the carrier of } K)} = \varepsilon_{\text{(the carrier of } K)}$.
- (65) $a \cdot \langle a_1 \rangle = \langle a \cdot a_1 \rangle$.
- $(66) \quad a_1 \cdot (i \mapsto a_2) = i \mapsto (a_1 \cdot a_2).$
- (67) Let K be an associative non empty groupoid, a_1 , a_2 be elements of K, and R be an element of (the carrier of K)ⁱ. Then $(a_1 \cdot a_2) \cdot R = a_1 \cdot (a_2 \cdot R)$.

We use the following convention: K is a distributive non empty double loop structure, a, a_1 , a_2 are elements of K, and K, K, are elements of (the carrier of K).

We now state several propositions:

- (68) $(a_1 + a_2) \cdot R = a_1 \cdot R + a_2 \cdot R$.
- (69) $a \cdot (R_1 + R_2) = a \cdot R_1 + a \cdot R_2$.
- (70) Let K be a distributive commutative left unital non empty double loop structure and R be an element of (the carrier of K)ⁱ. Then $\mathbf{1}_K \cdot R = R$.
- (71) Let K be an add-associative right zeroed right complementable distributive non empty double loop structure and R be an element of (the carrier of K)ⁱ. Then $0_K \cdot R = i \mapsto 0_K$.
- (72) Let K be an add-associative right zeroed right complementable commutative left unital distributive non empty double loop structure and R be an element of (the carrier of K)ⁱ. Then $(-\mathbf{1}_K) \cdot R = -R$.

Let M be a non empty groupoid and let p_1 , p_2 be finite sequences of elements of the carrier of M. The functor $p_1 \bullet p_2$ yields a finite sequence of elements of the carrier of M and is defined by:

(Def. 7)
$$p_1 \bullet p_2 = (\text{the multiplication of } M)^{\circ}(p_1, p_2).$$

For simplicity, we adopt the following rules: K denotes a non empty groupoid, a_1 , a_2 denote elements of K, p, p_1 , p_2 denote finite sequences of elements of the carrier of K, and R_1 , R_2 denote elements of (the carrier of K)ⁱ.

One can prove the following proposition

(73) If
$$i \in \text{dom}(p_1 \bullet p_2)$$
 and $a_1 = p_1(i)$ and $a_2 = p_2(i)$, then $(p_1 \bullet p_2)(i) = a_1 \cdot a_2$.

Let us consider i, let K be a non empty groupoid, and let R_1 , R_2 be elements of (the carrier of K) i . Then $R_1 \bullet R_2$ is an element of (the carrier of K) i .

The following three propositions are true:

(74) If
$$j \in \text{Seg } i$$
 and $a_1 = R_1(j)$ and $a_2 = R_2(j)$, then $(R_1 \bullet R_2)(j) = a_1 \cdot a_2$.

(75)
$$\varepsilon_{\text{(the carrier of }K)} \bullet p = \varepsilon_{\text{(the carrier of }K)} \text{ and } p \bullet \varepsilon_{\text{(the carrier of }K)} = \varepsilon_{\text{(the carrier of }K)}.$$

(76)
$$\langle a_1 \rangle \bullet \langle a_2 \rangle = \langle a_1 \cdot a_2 \rangle$$
.

We follow the rules: K is a commutative non empty groupoid, p, q are finite sequences of elements of the carrier of K, and R_1 , R_2 are elements of (the carrier of K)ⁱ.

Next we state three propositions:

(77)
$$R_1 \bullet R_2 = R_2 \bullet R_1$$
.

$$(78) \quad p \bullet q = q \bullet p.$$

(79) For every associative non empty groupoid K and for all elements R_1 , R_2 , R_3 of (the carrier of K)ⁱ holds $R_1 \bullet (R_2 \bullet R_3) = (R_1 \bullet R_2) \bullet R_3$.

We adopt the following convention: K is a commutative associative non empty groupoid, a, a_1 , a_2 are elements of K, and R is an element of (the carrier of K) i .

We now state three propositions:

(80)
$$i \mapsto a \bullet R = a \cdot R$$
 and $R \bullet i \mapsto a = a \cdot R$.

(81)
$$i \mapsto a_1 \bullet i \mapsto a_2 = i \mapsto (a_1 \cdot a_2).$$

(82) Let K be an associative non empty groupoid, a be an element of K, and R_1 , R_2 be elements of (the carrier of K)ⁱ. Then $a \cdot (R_1 \bullet R_2) = a \cdot R_1 \bullet R_2$.

We follow the rules: K is a commutative associative non empty groupoid, a is an element of K, and R, R_1 , R_2 are elements of (the carrier of K) i .

One can prove the following propositions:

(83)
$$a \cdot (R_1 \bullet R_2) = a \cdot R_1 \bullet R_2$$
 and $a \cdot (R_1 \bullet R_2) = R_1 \bullet a \cdot R_2$.

(84)
$$a \cdot R = i \mapsto a \bullet R$$
.

3. The sum of finite number of elements

Let us observe that every non empty loop structure which is Abelian and right zeroed is also left zeroed

Let K be an Abelian add-associative right zeroed right complementable non empty loop structure and let p be a finite sequence of elements of the carrier of K. Then $\sum p$ can be characterized by the condition:

(Def. 8)
$$\sum p$$
 = the addition of $K \otimes p$.

In the sequel K denotes an add-associative right zeroed right complementable non empty loop structure, a denotes an element of K, and p denotes a finite sequence of elements of the carrier of K.

One can prove the following propositions:

$$(87)^7 \quad \sum (p \, \widehat{} \langle a \rangle) = \sum p + a.$$

$$(89)^8 \quad \Sigma(\langle a \rangle \cap p) = a + \sum p.$$

- (92)⁹ Let K be an Abelian add-associative right zeroed right complementable distributive non empty double loop structure, a be an element of K, and p be a finite sequence of elements of the carrier of K. Then $\sum (a \cdot p) = a \cdot \sum p$.
- (93) For every non empty loop structure K and for every element R of (the carrier of K)⁰ holds $\Sigma R = 0_K$.

⁷ The propositions (85) and (86) have been removed.

⁸ The proposition (88) has been removed.

⁹ The propositions (90) and (91) have been removed.

In the sequel K denotes an Abelian add-associative right zeroed right complementable non empty loop structure, p denotes a finite sequence of elements of the carrier of K, and R_1 , R_2 denote elements of (the carrier of K) i .

Next we state three propositions:

- (94) $\sum (-p) = -\sum p.$
- (95) $\Sigma(R_1 + R_2) = \Sigma R_1 + \Sigma R_2$.
- (96) $\Sigma (R_1 R_2) = \Sigma R_1 \Sigma R_2$.

4. The product of finite number of elements

Let K be a non empty groupoid and let p be a finite sequence of elements of the carrier of K. The functor $\prod p$ yields an element of K and is defined by:

(Def. 9) $\prod p$ = the multiplication of $K \otimes p$.

The following propositions are true:

- (98)¹⁰ For every commutative left unital non empty double loop structure K holds $\prod(\epsilon_{\text{(the carrier of }K)}) = \mathbf{1}_K$.
- (99) For every non empty groupoid *K* and for every element *a* of *K* holds $\prod \langle a \rangle = a$.
- (100) Let K be a commutative left unital non empty double loop structure, a be an element of K, and p be a finite sequence of elements of the carrier of K. Then $\prod (p \cap \langle a \rangle) = \prod p \cdot a$.

For simplicity, we use the following convention: K denotes a commutative associative left unital non empty double loop structure, a, a_1 , a_2 , a_3 denote elements of K, p_1 , p_2 denote finite sequences of elements of the carrier of K, and R_1 , R_2 denote elements of (the carrier of K)ⁱ.

One can prove the following propositions:

- (101) $\Pi(p_1 \cap p_2) = \Pi p_1 \cdot \Pi p_2$.
- (102) $\Pi(\langle a \rangle \cap p_1) = a \cdot \prod p_1$.
- (103) $\prod \langle a_1, a_2 \rangle = a_1 \cdot a_2$.
- (104) $\prod \langle a_1, a_2, a_3 \rangle = a_1 \cdot a_2 \cdot a_3$.
- (105) For every element *R* of (the carrier of *K*)⁰ holds $\prod R = \mathbf{1}_K$.
- (106) $\prod (i \mapsto \mathbf{1}_K) = \mathbf{1}_K$.
- (107) Let K be an add-associative right zeroed right complementable Abelian commutative associative left unital distributive field-like non degenerated non empty double loop structure and p be a finite sequence of elements of the carrier of K. Then there exists k such that $k \in \text{dom } p$ and $p(k) = 0_K$ if and only if $\prod p = 0_K$.
- (108) $\prod ((i+j) \mapsto a) = \prod (i \mapsto a) \cdot \prod (j \mapsto a).$
- (109) $\prod ((i \cdot j) \mapsto a) = \prod (j \mapsto \prod (i \mapsto a)).$
- (110) $\prod (i \mapsto (a_1 \cdot a_2)) = \prod (i \mapsto a_1) \cdot \prod (i \mapsto a_2).$
- (111) $\Pi(R_1 \bullet R_2) = \Pi R_1 \cdot \Pi R_2$.
- (112) $\prod (a \cdot R_1) = \prod (i \mapsto a) \cdot \prod R_1.$

¹⁰ The proposition (97) has been removed.

5. The product of vectors

Let K be a non empty double loop structure and let p, q be finite sequences of elements of the carrier of K. The functor $p \cdot q$ yielding an element of K is defined as follows:

(Def. 10)
$$p \cdot q = \sum (p \cdot q)$$
.

The following propositions are true:

- (113) Let K be a commutative associative left unital Abelian add-associative right zeroed right complementable non empty double loop structure and a, b be elements of K. Then $\langle a \rangle \cdot \langle b \rangle = a \cdot b$.
- (114) Let K be a commutative associative left unital Abelian add-associative right zeroed right complementable non empty double loop structure and a_1 , a_2 , b_1 , b_2 be elements of K. Then $\langle a_1, a_2 \rangle \cdot \langle b_1, b_2 \rangle = a_1 \cdot b_1 + a_2 \cdot b_2$.
- (115) For all finite sequences p, q of elements of the carrier of K holds $p \cdot q = q \cdot p$.

ACKNOWLEDGMENTS

I would like to thank Czesław Byliński for his help.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [4] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [8] Czesław Byliński. Binary operations applied to finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/finsegop.html.
- [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [10] Czesław Byliński. Semigroup operations on finite subsets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/setwop_2.html.
- [11] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rvsum_1.html.
- [12] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [13] Katarzyna Jankowska. Transpose matrices and groups of permutations. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/matrix_2.html.
- [14] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [15] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/algstr_1.html.
- [16] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [17] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setwiseo.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

- [19] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [20] Andrzej Trybulec and Agata Darmochwał. Boolean domains. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finsub_1.html.
- [21] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [23] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received December 29, 1992

Published January 2, 2004