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Summary. The article contains some propositions and theorems relatéd to [9] and
[8]. The notions introduced if_[9] are extended to finite sequences. A number of additional
propositions related to this notions are proved. There are also proved some properties of
distributive operations and unary operations. The notation and propositions for inverses are
introduced.
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The articles([11],[17],[[12],[[13],.14],01],1[6],15]1,13], 2], [9], [8], and[10] provide the notation and
terminology for this paper.

For simplicity, we follow the rulesx, y denote sets;, C’, D, D/, E denote non empty sets,
denotes an element 6f ¢’ denotes an element 6f, d, dy, do, d3, ds, € denote elements d, and
d’ denotes an element &Y.

We now state several propositions:

(1) For every functiorf holds(0, f) = 0 and(f,0) = 0.

(2) For every functiorf holds[:0, f]=0and[ f, 0] =0.

4f] For all functionsF, f holdsF°(0, f) = 0 andF°(f, 0) = 0.

(5) For every functiorF holdsF°(0,x) = 0.

(6) For every functiorF holdsF°(x,0) = 0.

(7) For every seK and for all setxy, xz holds (X — X3, X — X2) = X — (X1, X2).

(8) For every functiorf and for every seX and for all sets, X2 such that(x;, x) € domF
holdsF°(X — x1, X — X2) = X — F({X1, X2)).

For simplicity, we follow the rulesi, j denote natural numbers, denotes a function frorhD,
D’] into E, p, g denote finite sequences of elementDofand p/, g’ denote finite sequences of
elements oD'.

Let us consideD, D', E, F, p, p’. ThenF°(p, p) is a finite sequence of elementskf

Let us consideb, D', E, F, p, d’. ThenF°(p,d’) is a finite sequence of elementskf

Let us consideb, D', E, F, d, p’. ThenF°(d, p') is a finite sequence of elementskf

Let us consideD, i, d. Theni — d is an element ob'.

In the sequef, f’ denote functions fror into D andh denotes a function fror into E.

1 The proposition (3) has been removed.
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LetD, E be sets, lep be a finite sequence of elementdifand leth be a function fronD into
E. Thenh- pis a finite sequence of elementskf
One can prove the following propositions:

9) h-(p~(d))=(h-p)~ (h(d)).
(20) h-(p~q)=(h-p)~(h-q).

For simplicity, we adopt the following conventiofT, Ty, T, T3 are elements ob', T/ is an
element oD", Sis an element ob!, andS is an element ob’/.
We now state a number of propositions:

~(d), T (d) = (F2(T, T')) ~ (F(d, d)).
T°ST'"8)=(F(T,T')"F(SS).
d,p’~(d) = (F°(d,p)) " (F(d, d")).
d,p'~d) = (F°(d,p)) " F°(d.q).
(15) ~{d),d) = (F°(p,d") ~ (F(d, d)).
(16) F°(p~a,d) = (F°(p,d)) " F°(q,d).
(17) For every functiot from D into E holdsh- (i — d) =i — h(d).

(1) Fo(T
(12) F*(
(13) F°(d,
(14) F°(d,
Fo(p
Fo(

(18) i—di—d)=i—F(dd).

Fe(
(19) F°(d,i—d)=i—F(d,d).
(20) F°(i—d,d)=i—F(d,d).
(21) F°(i—d, T")=F°(d,T').
(22) F°(T,i—d)=F°(T,d).
(23) F°(d,T') =F°(d,idp) - T’
Fe(T,d) =F°(idp,d)-T

In the sequeF, G are binary operations dR, u is a unary operation oB, andH is a binary
operation orE.
Next we state a number of propositions:

(24)

(25) If F is associative, theR°(d,idp) - F°(f, f') = F°(F°(d,idp) - f, ).
°(f, /) = F°(f, F°(idp,d) - ).

(

(26) If F is associative, theR°(idp,d (
°(T1, T2) = F°(F°(d,idp) - Ty, To).

(

(d,idp)-
(idp,d)-
(27) IfF is associative, theR°(d,idp) -
(28) IfF is associative, theR°(idp,d) - F°(Ty, Tp) = F°(Ty, F°(idp,d) - To).
(29) IfF is associative, theR°(F°(Ty, To), T3) = F°(Tq, F°(To, Ta)).
(30) IfF is associative, theR°(F°(dy, T),dz) = F°(d1,F°(T,d)).
(31) IfFis associative, theR°(F°(Ty,d), T2) = F°(T1, F°(d, T2)).

(F

(32) IfF is associative, theR°(F(dy, d2),T) = F°(d1,F°(d2, T)).
(33) IfFis associative, theR°(T,F(di, d2)) = F°(F°(T,d1),dz).
(34) If F is commutative, theR°(Ty, To) = F°(Ty, T1).

(35) If F is commutative, thef°(d,T) = F°(T,d).
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(36) If F is distributive w.r.t.G, thenF°(G(dy, d2), f) = G°(F°(dy, f), F°(dy, f)).
(37) IfFis distributive w.r.t.G, thenF°(f,G(d1, d2)) = G°(F°(f,d1), F°(f,dy)).
(38) Ifforallds, dy holdsh(F(di, d2)) = H(h(d1), h(dz)), thenh-F°(f, f'y=H°(h-f h- f).
(39) Ifforalldy, da holdsh(F(ds, dz)) = H(h(d1), h(d2)), thenh-F°(d, f) =
(40) Iffor all di, dz holdsh(F (ds, dz)) = H(h(d1), h(d2)), thenh-F°(f,d) =
(41) Ifuisdistributive w.r.t.F, thenu-F°(f, f') =F°(u-f, u- f').
(42) If uis distributive w.r.t.F, thenu-F°(d, f) = F°(u(d),u- f).
(43) If uis distributive w.r.t.F, thenu-F°(f,d) = F°(u- f,u(d)).
(44) If F has a unity, thef°(C+—— 1¢, f) = f andF°(f,C+— 1) = f.
(45) If F has a unity, thek°(1¢, f) = f.
(46) If F has a unity, theilr°(f,1¢) = f.
(47) If F is distributive w.r.t.G, thenF°(G(dy, d2), T) = G°(F°(d1,T), F°(d2, T)).
(48) If F is distributive w.r.t.G, thenF°(T,G(dy, d2)) = G°(F°(T,dy1), F°(T,dz)).
(49) Ifforalldy, dz holdsh(F(ds, dz)) =H(h(d1), h(dz)), thenh-F°(Ty, T,) =H°(h-Ty, h-Ty).
(50) Iffor all di, d2 holdsh(F (d1, dz)) = H(h(d1), h(d2)), thenh-F°(d,T) = H°(h(d),h-T).
(51) Ifforall dy, dp holdsh(F(dy, d2)) = H(h(ds), h(dy)), thenh-F°(T,d) = H°(h-T,h(d)).
(52) [Ifuisdistributive w.r.t.F, thenu-F°(Ty, T2) = F°(u- Ty, u-Ty).
(53) If uis distributive w.r.t.F, thenu-F°(d, T) = F°(u(d),u-T).
(54) If uis distributive w.r.t.F, thenu-F°(T,d) = F°(u-T,u(d)).
(55) If Gis distributive w.r.t.F andu = G°(d,idp), thenuis distributive w.r.t.F.
(56) If Gis distributive w.r.t.F andu = G°(idp,d), thenuis distributive w.r.t.F.
(57) IfF has aunity, thef°(i— 1, T) =T andF°(T,i— 1) =T.
(58) If F has a unity, ther°(1¢,T) =T.
(59) IfF has aunity, ther°(T,1¢) =T.
Let us consideD, u, F. We say that is an inverse operation w.r. if and only if:
(Def. 1) For evend holdsF(d, u(d)) = 1r andF (u(d), d) = 1.
Let us consideD, F. We say thafF if and only if:

(Def. 2) There exists which is an inverse operation w.rk.

We introduce= has an inverse operation as a synonyrf of
let us consideD, F. Let us assume thd& has a unityF is associative an& has an inverse
operation. The inverse operation w.tyields a unary operation dd and is defined by:

(Def. 3) The inverse operation w.IR.is an inverse operation w.rk.

One can prove the following propositions:

(63E] SupposeF is associative and has a unity and an inverse operation. Flghe inverse
operation w.r.tF)(d), d) = 1r andF(d, (the inverse operation w.rk.)(d)) = 1¢ .

2 The propositions (60)—(62) have been removed.
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(64) Supposé is associative and has a unity and an inverse operatiorFadd d) = 1F .
Thend; = (the inverse operation w.rit.)(dy) and (the inverse operation w.i)(d;) = d,.

(65) If F is associative and has a unity and an inverse operation, then (the inverse operation
W.r.t.F)(lF) =1F.

(66) If F is associative and has a unity and an inverse operation, then (the inverse operation
w.r.t.F)((the inverse operation w.ri.)(d)) = d.

(67) Supposé is associative and commutative and has a unity and an inverse operation. Then
the inverse operation w.rk.is distributive w.r.t.F.

(68) If F is associative and has a unity and an inverse operation @n@ljfd;) = F(d, dz) or
F(dla d) = F(dz, d)7 thendl = d2-

(69) If F is associative and has a unity and an inverse operation &ndif d2) = dp or F(da,
di) =dy, thend; = 1¢.

(70) Supposé€ is associative and has a unity and an inverse operatioGasdistributive w.r.t.
F ande= 1¢ . Let givend. ThenG(e, d) = eandG(d, e) = e.

(71) Supposé is associative and has a unity and an inverse operation anthe inverse op-
eration w.r.tF andG is distributive w.r.t.F. Thenu(G(ds, d2)) = G(u(ds), d2) andu(G(ds,

d2)) = G(dy, u(dp)).

(72) Supposd- is associative and has a unity and an inverse operatioruaadhe inverse
operation w.r.tF andG is distributive w.r.t.F and has a unity. TheB°(u(1g),idp) = u.

(73) If F is associative and has a unity and an inverse operatiorandlistributive w.r.t.F,
then(GO(d,idD))(lp) =1E.

(74) If F is associative and has a unity and an inverse operatiorsaadlistributive w.r.t.F,
then(G°(idp,d))(1r) = 1F .

(75) Supposé is associative and has a unity and an inverse operation. Fhh (the inverse
operation w.r.tF)- f) =C+— 1 andF°((the inverse operation w.ri.)-f, f)=C+—— 1.

(76) Supposé- is associative and has an inverse operation and a unitfFafid f') = C——
1r . Thenf = (the inverse operation w.ri)- f" and (the inverse operation w.&)-f = f’.

(77) Supposé is associative and has a unity and an inverse operation. Fh@n (the inverse
operation w.r.tF)-T) =i+ 1r andF°((the inverse operation W.rit) - T, T) =i — 1¢.

(78) Suppos€ is associative and has an inverse operation and a unitF afid, T,) =i — 1¢ .
ThenT; = (the inverse operation w.ri.) - T, and (the inverse operation w.i)-T; = To.

(79) If F is associative and has a unity aee= 1r andF has an inverse operation aglis
distributive w.r.t.F, thenG°(e,f) =C—e

(80) If F is associative and has a unity aed= 1 andF has an inverse operation a@&lis
distributive w.r.t.F, thenG°(e T) =i—e

LetF, f, g be functions. The functdf o (f,g) yields a function and is defined as follows:
(Def.4) Fo(f,g)=F-[f, gl
The following four propositions are true:

(82 For all functionsF, f, g such that(x, y) € dom(F o (f,g)) holds (F o (f,g))({x,y)) =
F((f(x),a(y)))-

3 The proposition (81) has been removed.
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(83) Forallfunctions=, f, gsuch thaix, y) € domF o(f,g)) holds(Fo(f,9))(x,y) =F(f(x),
9(y))-

(84) LetF be afunction fronf: D, D’ into E, f be a function fronC into D, andg be a function
fromC’ into D’. ThenF o (f,q) is a function from:C, C' ] into E.

(85) For all functionsy, U’ from D into D holdsF o (u,U) is a binary operation ob.

Let us consideD, F and letf, f’ be functions fromD into D. ThenF o (f,f’) is a binary
operation orD.
We now state several propositions:

(86) LetF be afunction froni: D, D’} into E, f be a function fronC into D, andg be a function
fromC' intoD’. Then(F o (f,g))(c,c) =F(f(c), g(c)).

(87) For every functioru from D into D holds (F o (idp, u))(d1, d2) = F(d1, u(dz)) and(F o
(u,idp))(d1, d2) = F(u(dy), da).

(88) (Fo(idp,u))°(f, f') =F°(f, u-f').

(89) (Fo(idp,u))°(Ty, T2) =F°(Ty, u- Ta).

(90) Supposé- is associative and commutative and has a unity and an inverse operation and
u=the inverse operation w.rk. Thenu((F o (idp,u))(d1, d2)) = (F o (u,idp))(ds, d2) and
(F o (idp,u))(dy, d2) = u((F o (u,idp))(d1, dz)).

(91) If F is associative and has a unity and an inverse operation, (fher{idp, the inverse
operation w.r.tF))(d,d) = 1.

(92) If F is associative and has a unity and an inverse operation, (fher{idp, the inverse
operation w.r.tF))(d, 1) =d.

(93) If F is associative and has a unity and an inverse operatiomw anthe inverse operation
w.r.t.F, then(F o (idp,u))(1F, d) = u(d).

(94) Supposéd- is commutative and associative and has a unity and an inverse operation and
G = F o (idp,the inverse operation w.rit). Let givend, dy, d3, ds. ThenF(G(dy, d2),
G(ds, ds)) = G(F(d1, d3), F(d2, ds)).

REFERENCES

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite seqdemnces.of Formalized Mathematics
1,1989)http://mizar.org/JFM/Voll/finseq_1.htmll

[2] Czestaw Bylhski. Basic functions and operations on functiodsurnal of Formalized Mathematic4, 1989.http://mizar.org/
JFM/Voll/funct_3.html.

[3] Czestaw Bylnhski. Binary operationsJournal of Formalized Mathematic&, 1989.http://mizar.org/JFM/Voll/binop_1.html.

[4] Czestaw Bylhski. Functions and their basic propertidsurnal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/
funct_1.html.

[5] Czestaw Bylhski. Functions from a set to a s@burnal of Formalized Mathematics, 1989/http://mizar.org/JFM/Voll/funct_|
2.htmll

[6] Czestaw Bylhski. Partial functionsJournal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/partfunl.html}

[7] Czestaw Byliski. Some basic properties of setournal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
zfmisc_1.html,

[8] Czestaw Byliski. Finite sequences and tuples of elements of a non-emptyJsetmal of Formalized Mathematic®, 1990.http:
//mizar.orqg/JFM/Vol2/finseq_2.htmll

[9] Andrzej Trybulec. Binary operations applied to functionfournal of Formalized Mathematic4, 1989. http://mizar.org/JFM/
Voll/funcop_1.html}

[10] Andrzej Trybulec. Semilattice operations on finite subsdtsurnal of Formalized Mathematic4, 1989. http://mizar.org/JFM/
Voll/setwiseo.html,


http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol1/funct_3.html
http://mizar.org/JFM/Vol1/funct_3.html
http://mizar.org/JFM/Vol1/binop_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/partfun1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/setwiseo.html
http://mizar.org/JFM/Vol1/setwiseo.html

BINARY OPERATIONS APPLIED TO FINITE SEQUENCES 6

[11] Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989 http://mizar.org/JFM/
Axiomatics/tarski.html.

[12] Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic, 1989 http://mizar.org/JFM/Voll/subset_1.html.

[13] Edmund Woronowicz. Relations and their basic propertisirnal of Formalized Mathematic4, 1989./http://mizar.org/JrFM/
Voll/relat_1.html}

Received May 4, 1990

Published January 2, 2004


http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	binary operations applied to finite sequences By czeslaw bylinski

