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Summary. We define the notion of an initial segment of natural numbers and prove a
number of their properties. Using this notion we introduce finite sequences, subsequences, the
empty sequence, a sequence of adomain, and the operation of concatenation of two sequences.
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The articles|[9], [[7], [[11], [[4], [12], [16], [I5], [[3], 2], [10], [[8], and[l1] provide the notation and
terminology for this paper.

1. MAIN PART

For simplicity, we adopt the following ruleg; I, m, n, ki, ko denote natural numbera, b, c denote
natural numbersy, y, z, y1, 2, X denote sets, anfldenotes a function.
Let n be a natural number. The functor Segields a set and is defined as follows:

(Def. 1) Segq={k:1<k A k<n}.

Let n be a natural number. Then Sei$ a subset oN.
Next we state several propositions:

@3] acSegiff1 <aanda<h.

(4) SegO=0and Segt {1} and Seg2= {1,2}.

(5) a=0orac Ser.

(6) a+leSeda+1).

(7) a<hbiff SegaC Sed.

(8) If Sega= Segh, thena=nh.

(9) If c<a, then Seg = Segcn Sega and Seg = Segan Secc.
(10) If Segc = Segcn Sega or Segc = SeganN Seqe, thenc < a.
(11) Sequ{a+1} =Sedga+1).

Letl; be a binary relation. We say thiatis finite sequence-like if and only if:

1Supported by RPBP.1I1-24.C1.
1 The propositions (1) and (2) have been removed.
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(Def. 2) There exista such that dory = Segn.

One can check that there exists a function which is finite sequence-like.

A finite sequence is a finite sequence-like function.

In the sequep, g, r denote finite sequences.

Let us considen. Observe that Sewis finite.

One can check that every function which is finite sequence-like is also finite.

Let us considep. Thenp is a natural number and it can be characterized by the condition:

(Def. 3) Segp = domp.

We introduce lemp as a synonym of.
Let us considep. Then donpis a subset oN.
One can prove the following two propositions:

(14F] 0is a finite sequence.

(15) If there existk such that donfi C Segk, then there existg such thatf C p.

In this article we present several logical schemes. The scBemExdeals with a natural number
A4 and a binary predicat®, and states that:
There existy such that donp = Seg4 and for everyk such thatk € Seg4 holds
[k, p(K)]
provided the parameters satisfy the following conditions:
e For allk, y1, y2 such thak € Segq and?[k, y1] and [k, y.] holdsy; = y», and
e For everyk such thak € Seg4 there existx such thatP[k, x].
The schemé&eglLambdaleals with a natural numbet and a unary functof yielding a set,
and states that:
There exists a finite sequenpesuch that lep = 4 and for everyk such thatk €
Seg4 holdsp(k) = F (k)
for all values of the parameters.
One can prove the following propositions:

(16) If ze€ p, then there existk such thak € domp andz = (k, p(k)).
(17) If domp = domg and for everk such thak € domp holds p(k) = q(k), thenp=q.
(18) Iflenp=lengand for everyk such that I< k andk < lenp holdsp(k) = q(k), thenp = q.
(19) p[Seais a finite sequence.
(20) Ifrngp C domf, thenf - pis a finite sequence.
(21) Ifa<lenpandg= p|Sedn, then lerg=a and dong = Sega.
Let D be a set. A finite sequence is called a finite sequence of elemebts:of
(Def. 4) rngitC D.

Let us observe thdt is finite sequence-like.

Let D be a set. Observe that there exists a partial function fiaimD which is finite sequence-
like.

Let D be a set. We see that the finite sequence of elememsé finite sequence-like partial
function fromN to D.

In the sequeD is a set.

Next we state two propositions:

(23 For every finite sequengeof elements oD holdsp| Sega s a finite sequence of elements
of D.

2 The propositions (12) and (13) have been removed.
3 The proposition (22) has been removed.
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For every non empty s@& there exists a finite sequengeof elements ofD such that

lenp=a.

Let us observe that there exists a finite sequence which is empty.
One can prove the following propositions:

(25)
(26)
(27)

lenp=0iff p=0.
p=0iffdomp=0.
p=0iffrngp=0.

(29@] For every seD holds0 is a finite sequence of elementsf

Let D be a set. One can check that there exists a finite sequence of elemé&ntshith is

empty.
Let us consider. The functor(x) yields a set and is defined by:
(Def.5) (x) = {{L.x)}.
Let D be a set. The functap yields an empty finite sequence of element®aind is defined
as follows:
(Def. 6) ep =0.

The following proposition is true

(32f] p=epifflenp=0.

Let us considep, g. The functorp ™ q yields a finite sequence and is defined as follows:

(Def. 7)

dom{p™ q) = Sedlenp+lenq) and for everyk such thak € domp holds(p™ q) (k) = p(K)

and for everk such thak € domg holds(p~ q)(lenp+k) = q(k).

One can prove the following propositions:

(35f] len(p~q) =lenp+leng.

(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)

Iflenp+ 1< kandk <lenp+lenq, then(p~ q)(k) = q(k—lenp).
Iflenp < kandk <len(p~q), then(p~ q)(k) = q(k—Ilenp).

If ke dom(p~ q), thenk € domp or there exists such than € domq andk = lenp+n.
domp C dom(p~q).

If x € domq, then there existk such thak = x and lenp+k € dom(p™ q).
If k e domg, then lemp+k € dom(p~ q).

rngp C rng(p~ q).

rngg C rg(p~ ).

rngp~q) = rngpurngg.

(p~a)"r=p~(@Q"r).

Ifp~r=q-rorr~p=r—q,thenp=aq.

p~0=pandd” p=p.

4 The proposition (28) has been removed.
5 The propositions (30) and (31) have been removed.
6 The propositions (33) and (34) have been removed.
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(48) Ifp~gq=0,thenp=0andg=0.

Let D be a set and lep, g be finite sequences of elementsaf Thenp ™ qis a finite sequence
of elements oD.
Let us consider. Then(x) is a function and it can be characterized by the condition:

(Def. 8) domx) = Seg1l andx)(1) = x.

Let us consider. Observe thafx) is function-like and relation-like.
Let us consider. Observe thafx) is finite sequence-like.
We now state the proposition

(50 Suppose ™ qis a finite sequence of elementdaf Thenpis a finite sequence of elements
of D andqis a finite sequence of elementsf

Let us considek, y. The functor(x,y) yields a set and is defined as follows:

(Def. 9) (xy) = (X) " (y).

Let us consider. The functor(x,y,2) yields a set and is defined as follows:

(Def. 10) (x%,2 = ()~ ()~ (2.

Let us consideg, y. Observe thatx,y) is function-like and relation-like. Let us considerOne
can check thatx, y, z) is function-like and relation-like.

Let us consideg, y. One can verify thatx, y) is finite sequence-like. Let us consideObserve
that(x,y, 2) is finite sequence-like.

We now state a number of propositions:

G2 %) = {1, %}

(55 p=(x)iff domp=Segland mg={x}.
(56) p=(x)ifflenp=1andrng = {x}.

(57) p=(x) ifflenp=1andp(1l) =x.

(58) (%)~ p)(1)=x

(59) (p~ (¥)(lenp+1) =x.

(60) (x,y,2) =(x) " (y,2) and(x,y,2) = (x,y) " (2).

(61) p={(xy) ifflenp=2andp(l) =xandp(2) =Y.
(62) p=(xy,2 ifflen p=3 andp(l) =xandp(2) =yandp(3) =z
(63) If p#£0, then there exist, x such thatp =g~ (x).

Let D be a non empty set and bebe an element dD. Then(x) is a finite sequence of elements
of D.

The scheméndSeqconcerns a unary predicafe and states that:

For everyp holds?[p]

provided the parameters satisfy the following conditions:

e P[0],and

e For all p, x such thatP[p] holdsP[p~ (x)].

We now state the proposition

(64) For all finite sequences q, r, ssuch thapp™ g=r " sand lernp < lenr there exists a finite
sequenceé such thap~t =r.

7 The proposition (49) has been removed.
8 The proposition (51) has been removed.
9 The propositions (53) and (54) have been removed.
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Let D be a set. The functdd* yields a set and is defined by:
(Def. 11) x e D* iff xis a finite sequence of elementsf

Let D be a set. One can verify thBt is non empty.
The following proposition is true

(669 0<D*.

The schem&epSegleals with a non empty set and a unary predicatg, and states that:

There existsX such that for everx holdsx € X iff there existsp such thatp € 2*
and?[p] andx=p

for all values of the parameters.
Letl1 be a function. We say th#t is finite subsequence-like if and only if:

(Def. 12) There existk such that dorly C Segk.

One can check that there exists a function which is finite subsequence-like.
A finite subsequence is a finite subsequence-like function.
We now state two propositions:

(GSE Every finite sequence is a finite subsequence.
(69) p[Xis a finite subsequence aXdp is a finite subsequence.

In the sequep’ is a finite subsequence.

Let us consideiX. Let us assume that there exig&tsuch thatX C Sedgk. The functor SgnX
yields a finite sequence of elementNoand is defined by:

(Def. 13) rngSgnX = X and for alll, m, ki, ko such that 1< | andl < mandm < lenSgnX and
ki = (SgmX)(l) andk; = (SgmX)(m) holdsk; < k.

The following proposition is true

(71 rng Sgmdonp’ = domp'.

Let us considep’. The functor Segq’ yields a function and is defined as follows:
(Def. 14) Seq' = p' - Sgmdony'.

Let us considep’. Note that Seg is finite sequence-like.
Next we state the proposition

(72) For everyX such that there existssuch thatX C Segk holds SgnX = 0iff X = 0.

2. MovVED FROM[8], 1998

One can prove the following proposition
(73) D is finite iff there existg such thaD = rngp.

One can verify that there exists a function which is finite and empty.
Let us note that there exists a function which is finite and non empty.
Let R be a finite binary relation. Observe that R finite.

10 The proposition (65) has been removed.
11 The proposition (67) has been removed.
12 The proposition (70) has been removed.
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3. MoveD FROMI1], 1999

One can prove the following propositions:

(74) If Segh~ Segn, thenn=m.

(75) Segqi=~n.

(76) Segn =T1.

(77) If X is finite, then there existssuch thaX ~ Segn.

(78) For every natural numberholds card Seg= n and cardh = n and cardn = n.
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