Segments of Natural Numbers and Finite Sequences¹

Grzegorz Bancerek Warsaw University Białystok Krzysztof Hryniewiecki Warsaw University Warsaw

Summary. We define the notion of an initial segment of natural numbers and prove a number of their properties. Using this notion we introduce finite sequences, subsequences, the empty sequence, a sequence of a domain, and the operation of concatenation of two sequences.

MML Identifier: FINSEQ_1.

WWW: http://mizar.org/JFM/Vol1/finseq_1.html

The articles [9], [7], [11], [4], [12], [6], [5], [3], [2], [10], [8], and [1] provide the notation and terminology for this paper.

1. MAIN PART

For simplicity, we adopt the following rules: k, l, m, n, k_1 , k_2 denote natural numbers, a, b, c denote natural numbers, x, y, z, y_1 , y_2 , X denote sets, and f denotes a function.

Let n be a natural number. The functor $\operatorname{Seg} n$ yields a set and is defined as follows:

(Def. 1) Seg
$$n = \{k : 1 \le k \land k \le n\}$$
.

Let n be a natural number. Then Seg n is a subset of \mathbb{N} . Next we state several propositions:

- $(3)^1$ $a \in \operatorname{Seg} b \text{ iff } 1 \leq a \text{ and } a \leq b.$
- (4) $Seg 0 = \emptyset$ and $Seg 1 = \{1\}$ and $Seg 2 = \{1, 2\}$.
- (5) a = 0 or $a \in \operatorname{Seg} a$.
- (6) $a+1 \in \text{Seg}(a+1)$.
- (7) $a \le b$ iff $\operatorname{Seg} a \subseteq \operatorname{Seg} b$.
- (8) If $\operatorname{Seg} a = \operatorname{Seg} b$, then a = b.
- (9) If $c \le a$, then $\operatorname{Seg} c = \operatorname{Seg} c \cap \operatorname{Seg} a$ and $\operatorname{Seg} c = \operatorname{Seg} a \cap \operatorname{Seg} c$.
- $(10) \quad \text{If $\operatorname{Seg} c = \operatorname{Seg} c \cap \operatorname{Seg} a$ or $\operatorname{Seg} c = \operatorname{Seg} a \cap \operatorname{Seg} c$, then $c \leq a$.}$
- (11) $\operatorname{Seg} a \cup \{a+1\} = \operatorname{Seg}(a+1).$

Let I_1 be a binary relation. We say that I_1 is finite sequence-like if and only if:

1

¹Supported by RPBP.III-24.C1.

¹ The propositions (1) and (2) have been removed.

(Def. 2) There exists n such that dom $I_1 = \operatorname{Seg} n$.

One can check that there exists a function which is finite sequence-like.

A finite sequence is a finite sequence-like function.

In the sequel p, q, r denote finite sequences.

Let us consider n. Observe that Seg n is finite.

One can check that every function which is finite sequence-like is also finite.

Let us consider p. Then $\overline{\overline{p}}$ is a natural number and it can be characterized by the condition:

(Def. 3) Seg $\overline{\overline{p}} = \text{dom } p$.

We introduce len p as a synonym of $\overline{\overline{p}}$.

Let us consider p. Then dom p is a subset of \mathbb{N} .

One can prove the following two propositions:

- $(14)^2$ 0 is a finite sequence.
- (15) If there exists k such that dom $f \subseteq \operatorname{Seg} k$, then there exists p such that $f \subseteq p$.

In this article we present several logical schemes. The scheme SeqEx deals with a natural number \mathcal{A} and a binary predicate \mathcal{P} , and states that:

There exists p such that dom $p = \text{Seg } \mathcal{A}$ and for every k such that $k \in \text{Seg } \mathcal{A}$ holds $\mathcal{P}[k, p(k)]$

provided the parameters satisfy the following conditions:

- For all k, y_1 , y_2 such that $k \in \text{Seg } \mathcal{A}$ and $\mathcal{P}[k, y_1]$ and $\mathcal{P}[k, y_2]$ holds $y_1 = y_2$, and
- For every k such that $k \in \text{Seg } \mathcal{A}$ there exists k such that $\mathcal{P}[k, k]$.

The scheme SeqLambda deals with a natural number \mathcal{A} and a unary functor \mathcal{F} yielding a set, and states that:

There exists a finite sequence p such that len $p = \mathcal{A}$ and for every k such that $k \in \text{Seg } \mathcal{A} \text{ holds } p(k) = \mathcal{F}(k)$

for all values of the parameters.

One can prove the following propositions:

- (16) If $z \in p$, then there exists k such that $k \in \text{dom } p$ and $z = \langle k, p(k) \rangle$.
- (17) If dom p = dom q and for every k such that $k \in \text{dom } p$ holds p(k) = q(k), then p = q.
- (18) If len p = len q and for every k such that $1 \le k$ and $k \le \text{len } p$ holds p(k) = q(k), then p = q.
- (19) $p \upharpoonright \operatorname{Seg} a$ is a finite sequence.
- (20) If rng $p \subseteq \text{dom } f$, then $f \cdot p$ is a finite sequence.
- (21) If $a \le \text{len } p$ and $q = p \upharpoonright \text{Seg } a$, then len q = a and dom q = Seg a.

Let D be a set. A finite sequence is called a finite sequence of elements of D if:

(Def. 4) rng it $\subseteq D$.

Let us observe that 0 is finite sequence-like.

Let D be a set. Observe that there exists a partial function from \mathbb{N} to D which is finite sequence-like.

Let D be a set. We see that the finite sequence of elements of D is a finite sequence-like partial function from \mathbb{N} to D.

In the sequel D is a set.

Next we state two propositions:

(23)³ For every finite sequence p of elements of D holds $p \upharpoonright \operatorname{Seg} a$ is a finite sequence of elements of D.

² The propositions (12) and (13) have been removed.

³ The proposition (22) has been removed.

(24) For every non empty set D there exists a finite sequence p of elements of D such that len p = a.

Let us observe that there exists a finite sequence which is empty. One can prove the following propositions:

- (25) len p = 0 iff p = 0.
- (26) $p = \emptyset$ iff dom $p = \emptyset$.
- (27) $p = \emptyset \text{ iff rng } p = \emptyset.$
- (29)⁴ For every set D holds \emptyset is a finite sequence of elements of D.

Let D be a set. One can check that there exists a finite sequence of elements of D which is empty.

Let us consider x. The functor $\langle x \rangle$ yields a set and is defined by:

(Def. 5)
$$\langle x \rangle = \{\langle 1, x \rangle\}.$$

Let D be a set. The functor ε_D yields an empty finite sequence of elements of D and is defined as follows:

(Def. 6) $\varepsilon_D = \emptyset$.

The following proposition is true

$$(32)^5$$
 $p = \varepsilon_D$ iff len $p = 0$.

Let us consider p, q. The functor $p \cap q$ yields a finite sequence and is defined as follows:

(Def. 7) $\operatorname{dom}(p \cap q) = \operatorname{Seg}(\operatorname{len} p + \operatorname{len} q)$ and for every k such that $k \in \operatorname{dom} p$ holds $(p \cap q)(k) = p(k)$ and for every k such that $k \in \operatorname{dom} q$ holds $(p \cap q)(\operatorname{len} p + k) = q(k)$.

One can prove the following propositions:

- $(35)^6 \quad \operatorname{len}(p \cap q) = \operatorname{len} p + \operatorname{len} q.$
- (36) If $\operatorname{len} p + 1 \le k$ and $k \le \operatorname{len} p + \operatorname{len} q$, then $(p \cap q)(k) = q(k \operatorname{len} p)$.
- (37) If $\operatorname{len} p < k$ and $k \le \operatorname{len}(p \cap q)$, then $(p \cap q)(k) = q(k \operatorname{len} p)$.
- (38) If $k \in \text{dom}(p \cap q)$, then $k \in \text{dom} p$ or there exists n such that $n \in \text{dom} q$ and k = len p + n.
- (39) $\operatorname{dom} p \subseteq \operatorname{dom}(p \cap q)$.
- (40) If $x \in \text{dom } q$, then there exists k such that k = x and $\text{len } p + k \in \text{dom}(p \cap q)$.
- (41) If $k \in \text{dom } q$, then $\text{len } p + k \in \text{dom}(p \cap q)$.
- (42) $\operatorname{rng} p \subseteq \operatorname{rng}(p \cap q)$.
- (43) $\operatorname{rng} q \subseteq \operatorname{rng}(p \cap q)$.
- $(44) \quad \operatorname{rng}(p \cap q) = \operatorname{rng} p \cup \operatorname{rng} q.$
- $(45) \quad (p \cap q) \cap r = p \cap (q \cap r).$
- (46) If $p \cap r = q \cap r$ or $r \cap p = r \cap q$, then p = q.
- (47) $p \cap \emptyset = p$ and $\emptyset \cap p = p$.

⁴ The proposition (28) has been removed.

⁵ The propositions (30) and (31) have been removed.

⁶ The propositions (33) and (34) have been removed.

(48) If $p \cap q = \emptyset$, then $p = \emptyset$ and $q = \emptyset$.

Let D be a set and let p, q be finite sequences of elements of D. Then $p \cap q$ is a finite sequence of elements of D.

Let us consider x. Then $\langle x \rangle$ is a function and it can be characterized by the condition:

(Def. 8)
$$\operatorname{dom}\langle x \rangle = \operatorname{Seg} 1$$
 and $\langle x \rangle(1) = x$.

Let us consider x. Observe that $\langle x \rangle$ is function-like and relation-like.

Let us consider x. Observe that $\langle x \rangle$ is finite sequence-like.

We now state the proposition

 $(50)^7$ Suppose $p \cap q$ is a finite sequence of elements of D. Then p is a finite sequence of elements of D and q is a finite sequence of elements of D.

Let us consider x, y. The functor $\langle x, y \rangle$ yields a set and is defined as follows:

(Def. 9)
$$\langle x, y \rangle = \langle x \rangle \cap \langle y \rangle$$
.

Let us consider z. The functor $\langle x, y, z \rangle$ yields a set and is defined as follows:

(Def. 10)
$$\langle x, y, z \rangle = \langle x \rangle \cap \langle y \rangle \cap \langle z \rangle$$
.

Let us consider x, y. Observe that $\langle x, y \rangle$ is function-like and relation-like. Let us consider z. One can check that $\langle x, y, z \rangle$ is function-like and relation-like.

Let us consider x, y. One can verify that $\langle x, y \rangle$ is finite sequence-like. Let us consider z. Observe that $\langle x, y, z \rangle$ is finite sequence-like.

We now state a number of propositions:

$$(52)^8 \quad \langle x \rangle = \{\langle 1, x \rangle\}.$$

$$(55)^9$$
 $p = \langle x \rangle$ iff dom $p = \text{Seg 1}$ and rng $p = \{x\}$.

(56)
$$p = \langle x \rangle$$
 iff len $p = 1$ and rng $p = \{x\}$.

(57)
$$p = \langle x \rangle$$
 iff len $p = 1$ and $p(1) = x$.

(58)
$$(\langle x \rangle \cap p)(1) = x$$
.

(59)
$$(p \cap \langle x \rangle)(\operatorname{len} p + 1) = x$$
.

(60)
$$\langle x, y, z \rangle = \langle x \rangle \cap \langle y, z \rangle$$
 and $\langle x, y, z \rangle = \langle x, y \rangle \cap \langle z \rangle$.

(61)
$$p = \langle x, y \rangle$$
 iff len $p = 2$ and $p(1) = x$ and $p(2) = y$.

(62)
$$p = \langle x, y, z \rangle$$
 iff len $p = 3$ and $p(1) = x$ and $p(2) = y$ and $p(3) = z$.

(63) If $p \neq \emptyset$, then there exist q, x such that $p = q \cap \langle x \rangle$.

Let *D* be a non empty set and let *x* be an element of *D*. Then $\langle x \rangle$ is a finite sequence of elements of *D*.

The scheme IndSeq concerns a unary predicate \mathcal{P} , and states that:

For every p holds $\mathcal{P}[p]$

provided the parameters satisfy the following conditions:

- P[0], and
- For all p, x such that $\mathcal{P}[p]$ holds $\mathcal{P}[p \cap \langle x \rangle]$.

We now state the proposition

(64) For all finite sequences p, q, r, s such that $p \cap q = r \cap s$ and len $p \le \text{len } r$ there exists a finite sequence t such that $p \cap t = r$.

⁷ The proposition (49) has been removed.

⁸ The proposition (51) has been removed.

⁹ The propositions (53) and (54) have been removed.

Let D be a set. The functor D^* yields a set and is defined by:

(Def. 11) $x \in D^*$ iff x is a finite sequence of elements of D.

Let D be a set. One can verify that D^* is non empty.

The following proposition is true

 $(66)^{10}$ $\emptyset \in D^*$.

The scheme SepSeq deals with a non empty set \mathcal{A} and a unary predicate \mathcal{P} , and states that:

There exists X such that for every x holds $x \in X$ iff there exists p such that $p \in \mathcal{A}^*$ and $\mathcal{P}[p]$ and x = p

for all values of the parameters.

Let I_1 be a function. We say that I_1 is finite subsequence-like if and only if:

(Def. 12) There exists k such that dom $I_1 \subseteq \text{Seg } k$.

One can check that there exists a function which is finite subsequence-like.

A finite subsequence is a finite subsequence-like function.

We now state two propositions:

- (68)¹¹ Every finite sequence is a finite subsequence.
- (69) $p \upharpoonright X$ is a finite subsequence and $X \upharpoonright p$ is a finite subsequence.

In the sequel p' is a finite subsequence.

Let us consider X. Let us assume that there exists k such that $X \subseteq \operatorname{Seg} k$. The functor $\operatorname{Sgm} X$ yields a finite sequence of elements of \mathbb{N} and is defined by:

(Def. 13) $\operatorname{rng} \operatorname{Sgm} X = X$ and for all l, m, k_1 , k_2 such that $1 \le l$ and l < m and $m \le \operatorname{len} \operatorname{Sgm} X$ and $k_1 = (\operatorname{Sgm} X)(l)$ and $k_2 = (\operatorname{Sgm} X)(m)$ holds $k_1 < k_2$.

The following proposition is true

 $(71)^{12}$ rng Sgm dom p' = dom p'.

Let us consider p'. The functor Seq p' yields a function and is defined as follows:

(Def. 14) Seq $p' = p' \cdot \operatorname{Sgm} \operatorname{dom} p'$.

Let us consider p'. Note that Seq p' is finite sequence-like.

Next we state the proposition

- (72) For every *X* such that there exists *k* such that $X \subseteq \operatorname{Seg} k$ holds $\operatorname{Sgm} X = \emptyset$ iff $X = \emptyset$.
 - 2. MOVED FROM [8], 1998

One can prove the following proposition

(73) D is finite iff there exists p such that $D = \operatorname{rng} p$.

One can verify that there exists a function which is finite and empty.

Let us note that there exists a function which is finite and non empty.

Let R be a finite binary relation. Observe that rng R is finite.

¹⁰ The proposition (65) has been removed.

¹¹ The proposition (67) has been removed.

¹² The proposition (70) has been removed.

3. MOVED FROM [1], 1999

One can prove the following propositions:

- (74) If $\operatorname{Seg} n \approx \operatorname{Seg} m$, then n = m.
- (75) Seg $n \approx n$.
- (76) $\overline{\overline{\operatorname{Seg}n}} = \overline{\overline{n}}.$
- (77) If *X* is finite, then there exists *n* such that $X \approx \text{Seg } n$.
- (78) For every natural number *n* holds card Seg n = n and card n = n and card $\overline{n} = n$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [4] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [5] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/wellord2.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat 1.html.

Received April 1, 1989

Published January 2, 2004