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Summary. In this article we deal with the notion of equivalence relation. The main
properties of equivalence relations are proved. Then we define the classes of abstraction de-
termined by an equivalence relation. Finally, the connections between a partition of a set and
an equivalence relation are presented. We introduce the following notation of nieglas:
alence Relation, a partitian

MML Identifier: EQREL_1.

WWW: http://mizar.orqg/JFM/Voll/eqrel_1.html

The articlesl[[7],[[5],8],19], [11],110],16],12], [3], [1], and.[4] provide the notation and terminol-
ogy for this paper.

For simplicity, we use the following conventiolX, Y, X, y, z denote sets, j denote natural
numbersA, B denote subsets of, R, Ry, Ry denote binary relations a¥, andS; denotes a family
of subsets of X, X 1.

One can prove the following proposition

(1) Ifi< j,thenj—iisanatural number.
Let us consideK. The functorlly yielding a binary relation oiX is defined as follows:
(Def. 1) Ox =X, X].

Let us consideK. Note thatly is total and reflexive.

Let us consideiX and let us consideR;, R,. ThenR; N Ry is a binary relation orX. Then
R URy is a binary relation oiX.

The following proposition is true

(4f] idy is reflexive inX and idk is symmetric inX and idx is transitive inX.

Let us consideX. A tolerance ofX is a total reflexive symmetric binary relation oh An
equivalence relation of is a total symmetric transitive binary relation ¥n
One can prove the following propositions:

(GE] idx is an equivalence relation of.
(7) Oy is an equivalence relation of.

Let us consideKX. Note thatly is total, symmetric, and transitive.
In the sequek;, E, E3 are equivalence relations Xf
Next we state several propositions:

1Supported by RPBP.1I1-24.C8.
1 The propositions (2) and (3) have been removed.
2 The proposition (5) has been removed.
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(11 For every total reflexive binary relatidRon X such thai € X holds{x, x} € R.
(12) For every total symmetric binary relati®won X such thatx, y) € Rholds{y, x) € R

(13) For every total transitive binary relatiéhon X such that(x, y) € Rand(y, zZ) € R holds
(x,2) eR

(14) For every total reflexive binary relatiéhon X such that there exists a sesuch thak € X
holdsR # 0.

(15) For every total binary relatioR on X holds fieldR = X.

(16) Risan equivalence relation &fiff Ris reflexive, symmetric, and transitive and fiRe: X.

Let us consideK and let us considef,, E3. ThenE; N Ejz is an equivalence relation of.
We now state four propositions:

(17) idx NEy = idx.
(18) OxNR=R

(19) Let givenS;. Supposes, =~ 0 and for everyY such thaty € S holdsY is an equivalence
relation ofX. Then S, is an equivalence relation of.

(20) For everyR there existsE; such thatR C E; and for everyEs such thatR C Ez holds
E; C Es.

Let us consideK and let us consideg,, E3. The functorE; LI E3 yields an equivalence relation
of X and is defined by:

(Def. 3&] E, UE3 C Ex LUE3 and for everyE; such thaE, UE3 C Ep holdsE LIE3 C Ey.
We now state two propositions:
(22 E1UEi=E;.
(23) E;LE;=E3UE,.

Let us consideK and let us considdf,, Ez. Let us note that the funct@ U Ez is commutative.
Next we state two propositions:

(24) EoN (Ezu E3) =E».
(25) E, LUE; NE3 = Eo.

The schemé&x Eq Reldeals with a sef and a binary predicat®, and states that:
There exists an equivalence relatiénof 4 such that for alk, y holds{x, y) € E1
iff xe€ A4 andy € 4 and?[x,y|
provided the parameters meet the following requirements:
e For everyx such tha € 4 holds?[x, ],
e For allx, y such thatP[x,y] holds?]y,x], and
e Forallx,y, zsuch thatP[x,y] andP[y,Z holdsP[x, Z].
Let X be a set, leRbe a tolerance oX, and letx be a set. The functdk]y, yields a subset oX
and is defined by:

(Def. 4) [xg=R{x}.

We now state a number of propositions:

3 The propositions (8)—(10) have been removed.
4 The definition (Def. 2) has been removed.
5 The proposition (21) has been removed.
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(27E| For every toleranc® of X holdsy € [x|r iff {y,X) € R

(28) For every tolerancR of X and for every such tha € X holdsx € [X|.

(29) For every tolerancR of X and for every such thai € X there existy such tha € [y|.
(30) For every transitive tolerané®of X such thay € [X|r andz € [x]g holds(y, z) € R.

(31) Forevery such thak € X holdsy € [X|g,) iff [Xg,) = [Y](g,)-

(32) Forallx,ysuch thak € X andy € X holds[X| g,) = [y} g, or []g,) missesy]g,).

(33) For every such thatk € X holds[x]idx = {x}.

(34) For every such thai € X holds[| oy = X

(35) If there existx such thal[x](El) =X, thenE; = Ox.

(36) Suppose € X. Then(x,y) € E;LIE; if and only if there exists a finite sequenéesuch
that 1<lenf andx= f(1) andy = f(lenf) and for every such that i< i andi < lenf holds
(f(i), f(i+1)) e E2UEs.

(37) For every equivalence relati@nof X such thaE = E; UEz and for every such thak € X

(88) If ExUE3 = Oy, thenEy = Ox or E3 = O.

Let us consideK and let us considdf;. The functor Classds; yields a family of subsets of
and is defined as follows:

(Def. 5) A€ Classes; iff there existsc such thak € X andA = [X] g,
We now state the proposition
(40)] 1f X = 0, then ClasseB; = 0.
Let us consideK. A family of subsets oK is said to be a partition of if:

(Def. 6)()) Uit =X and for everyA such thatA € it holds A = 0 and for everyB such thatB < it
holdsA = B or A misseB if X £ 0,

(i) it =0, otherwise.

The following propositions are true:
(42F| Classeg; is a partition ofX.
(43) For every partitioP of X there existE; such thaP = Classeg;.
(44) For every such thak € X holds(x, y) € E1 iff [|g,) = [V]g,)-

(45) If x e Classeg;, then there exists an elemgnof X such tha = [y}(El).

6 The proposition (26) has been removed.
" The proposition (39) has been removed.
8 The proposition (41) has been removed.
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