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Summary. In this article we deal with the notion of equivalence relation. The main
properties of equivalence relations are proved. Then we define the classes of abstraction de-
termined by an equivalence relation. Finally, the connections between a partition of a set and
an equivalence relation are presented. We introduce the following notation of modes:Equiv-
alence Relation, a partition.

MML Identifier: EQREL_1.

WWW: http://mizar.org/JFM/Vol1/eqrel_1.html

The articles [7], [5], [8], [9], [11], [10], [6], [2], [3], [1], and [4] provide the notation and terminol-
ogy for this paper.

For simplicity, we use the following convention:X, Y, x, y, z denote sets,i, j denote natural
numbers,A, B denote subsets ofX, R, R1, R2 denote binary relations onX, andS1 denotes a family
of subsets of[:X, X :].

One can prove the following proposition

(1) If i < j, then j− i is a natural number.

Let us considerX. The functor∇X yielding a binary relation onX is defined as follows:

(Def. 1) ∇X = [:X, X :].

Let us considerX. Note that∇X is total and reflexive.
Let us considerX and let us considerR1, R2. ThenR1∩R2 is a binary relation onX. Then

R1∪R2 is a binary relation onX.
The following proposition is true

(4)1 idX is reflexive inX and idX is symmetric inX and idX is transitive inX.

Let us considerX. A tolerance ofX is a total reflexive symmetric binary relation onX. An
equivalence relation ofX is a total symmetric transitive binary relation onX.

One can prove the following propositions:

(6)2 idX is an equivalence relation ofX.

(7) ∇X is an equivalence relation ofX.

Let us considerX. Note that∇X is total, symmetric, and transitive.
In the sequelE1, E2, E3 are equivalence relations ofX.
Next we state several propositions:

1Supported by RPBP.III-24.C8.
1 The propositions (2) and (3) have been removed.
2 The proposition (5) has been removed.
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(11)3 For every total reflexive binary relationRonX such thatx∈ X holds〈〈x, x〉〉 ∈ R.

(12) For every total symmetric binary relationRonX such that〈〈x, y〉〉 ∈ Rholds〈〈y, x〉〉 ∈ R.

(13) For every total transitive binary relationR on X such that〈〈x, y〉〉 ∈ R and〈〈y, z〉〉 ∈ R holds
〈〈x, z〉〉 ∈ R.

(14) For every total reflexive binary relationRonX such that there exists a setx such thatx∈ X
holdsR 6= /0.

(15) For every total binary relationRonX holds fieldR= X.

(16) R is an equivalence relation ofX iff R is reflexive, symmetric, and transitive and fieldR= X.

Let us considerX and let us considerE2, E3. ThenE2∩E3 is an equivalence relation ofX.
We now state four propositions:

(17) idX ∩E1 = idX.

(18) ∇X ∩R= R.

(19) Let givenS1. SupposeS1 6= /0 and for everyY such thatY ∈ S1 holdsY is an equivalence
relation ofX. Then

⋂
S1 is an equivalence relation ofX.

(20) For everyR there existsE1 such thatR⊆ E1 and for everyE3 such thatR⊆ E3 holds
E1 ⊆ E3.

Let us considerX and let us considerE2, E3. The functorE2tE3 yields an equivalence relation
of X and is defined by:

(Def. 3)4 E2∪E3 ⊆ E2tE3 and for everyE1 such thatE2∪E3 ⊆ E1 holdsE2tE3 ⊆ E1.

We now state two propositions:

(22)5 E1tE1 = E1.

(23) E2tE3 = E3tE2.

Let us considerX and let us considerE2, E3. Let us note that the functorE2tE3 is commutative.
Next we state two propositions:

(24) E2∩ (E2tE3) = E2.

(25) E2tE2∩E3 = E2.

The schemeEx Eq Reldeals with a setA and a binary predicateP , and states that:
There exists an equivalence relationE1 of A such that for allx, y holds〈〈x, y〉〉 ∈ E1

iff x∈ A andy∈ A andP [x,y]
provided the parameters meet the following requirements:

• For everyx such thatx∈ A holdsP [x,x],
• For allx, y such thatP [x,y] holdsP [y,x], and
• For allx, y, z such thatP [x,y] andP [y,z] holdsP [x,z].

Let X be a set, letR be a tolerance ofX, and letx be a set. The functor[x]R yields a subset ofX
and is defined by:

(Def. 4) [x]R = R◦{x}.

We now state a number of propositions:

3 The propositions (8)–(10) have been removed.
4 The definition (Def. 2) has been removed.
5 The proposition (21) has been removed.
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(27)6 For every toleranceRof X holdsy∈ [x]R iff 〈〈y, x〉〉 ∈ R.

(28) For every toleranceRof X and for everyx such thatx∈ X holdsx∈ [x]R.

(29) For every toleranceRof X and for everyx such thatx∈ X there existsy such thatx∈ [y]R.

(30) For every transitive toleranceRof X such thaty∈ [x]R andz∈ [x]R holds〈〈y, z〉〉 ∈ R.

(31) For everyx such thatx∈ X holdsy∈ [x](E1) iff [x](E1) = [y](E1).

(32) For allx, y such thatx∈ X andy∈ X holds[x](E1) = [y](E1) or [x](E1) misses[y](E1).

(33) For everyx such thatx∈ X holds[x]idX
= {x}.

(34) For everyx such thatx∈ X holds[x]∇X
= X.

(35) If there existsx such that[x](E1) = X, thenE1 = ∇X.

(36) Supposex ∈ X. Then〈〈x, y〉〉 ∈ E2tE3 if and only if there exists a finite sequencef such
that 1≤ len f andx= f (1) andy= f (len f ) and for everyi such that 1≤ i andi < len f holds
〈〈 f (i), f (i +1)〉〉 ∈ E2∪E3.

(37) For every equivalence relationE of X such thatE = E2∪E3 and for everyx such thatx∈X
holds[x]E = [x](E2) or [x]E = [x](E3).

(38) If E2∪E3 = ∇X, thenE2 = ∇X or E3 = ∇X.

Let us considerX and let us considerE1. The functor ClassesE1 yields a family of subsets ofX
and is defined as follows:

(Def. 5) A∈ ClassesE1 iff there existsx such thatx∈ X andA = [x](E1).

We now state the proposition

(40)7 If X = /0, then ClassesE1 = /0.

Let us considerX. A family of subsets ofX is said to be a partition ofX if:

(Def. 6)(i)
⋃

it = X and for everyA such thatA∈ it holdsA 6= /0 and for everyB such thatB∈ it
holdsA = B or A missesB if X 6= /0,

(ii) it = /0, otherwise.

The following propositions are true:

(42)8 ClassesE1 is a partition ofX.

(43) For every partitionP of X there existsE1 such thatP = ClassesE1.

(44) For everyx such thatx∈ X holds〈〈x, y〉〉 ∈ E1 iff [x](E1) = [y](E1).

(45) If x∈ ClassesE1, then there exists an elementy of X such thatx = [y](E1).

6 The proposition (26) has been removed.
7 The proposition (39) has been removed.
8 The proposition (41) has been removed.
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