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The articles[[16],1[3],[[15], (6], 7], [17], (4], [[10], 8], [2], 9], ([12], [14], [[5], [[1], [11], and [13]
provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following conventioni, ro, r3 are sequences of real numbess,s,,
sz are complex sequencds,n, mare natural numbers, anq@ r are real numbers.
We now state three propositions:

(1) (n+1)+0i#0c and 0+ (n+ 1)i # Oc.
(2) If for everynholdsrq(n) = 0, then for everymholds (3 §_o|r1|(a))ken(m) = 0.

(3) Iffor everynholdsri(n) =0, thenr; is absolutely summable.

Let us observe that there exists a sequence of real numbers which is absolutely summable.

Let us note that every sequence of real numbers which is summable is also convergent.

Let us mention that every sequence of real numbers which is absolutely summable is also
summable.

Let us mention that there exists a sequence of real numbers which is absolutely summable.

The following propositions are true:

(4) Suppose; is convergent. Let givep. Suppose & p. Then there exists such that for all
natural numbers, | such than < mandn <1 holds|ri(m) —ri(l)| < p.

(5) Iffor everynholdsri(n) < p, then for all natural numbers | holds(S§_o(r1)(a))ken(n+
1) = (Ta—o(r1)(a))ken(n) < p-I.

(6) If for everynholdsri(n) < p, then for everyn holds (3 §_q(r1)(a))ken(n) < p-(n+1).

(7) If for every n such thatn < m holdsrz(n) < p-rz(n), then(S5_o(r2)(a))ken(m) < p-
(Ya=o(ra)(a))ken(m).

(8) Suppose that for every such thatn < m holdsr,(n) < p-rz(n). Let givenn. Sup-
posen < m. Let | be a natural number. Ifi+1 < m, then (3§_o(r2)(a))ken(n+1) —

(Za=0(r2)(@))ken(n) < P- ((Xa-0(r3)(@))kern(N+1) = (Fa—o(r3)(a) ken(M)).
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(9) If for every n holds 0< ry(n), then for all n, m such thatn < m holds

|(Xa=o(r1)(@))xen (M) = (Fa—0(r1) (@))xen (M| = (Fa_o(r1) (@))ken (M) — (Ta—o(r1)(a0))xen(M)
and for everyn holds| (3 g—o("1)(@))ken (M| = (Fa=o(r1)(A) Jken(n).

(10) If s, is convergent anes is convergent and lifs; — s3) = Oc, then lims, = lim sg.

2. THE OPERATIONS ONCOMPLEX SEQUENCES

In the sequet is an element of andNj is an increasing sequence of naturals.
Let zbe an element of. The functor(Z)ycy yielding a complex sequence is defined by:

(Def. 1) (Z)ken(0) = 1¢ and for everyn holds(Z)ken(n+ 1) = (Z)ken(n) -z

Letzbe an element of and letn be a natural number. The funct yielding an element of
is defined by:

One can prove the following proposition
11) 7 =1c

Let c be a complex sequence. The funditfc) yields a sequence of real numbers and is defined
by:

(Def. 3) For everyn holdsO(c)(n) = O(c(n)).

Let c be a complex sequence. The funditic) yielding a sequence of real numbers is defined
as follows:

(Def. 4) For everyn holdsO(c)(n) = O(c(n)).
Next we state a number of propositions:
(12) [4<|0@)|+[02)-
(13) B[ <7 and|0(z) < |2
(14) IfO(s) = 0O(s3) andl(sp) = O(s), thens, = ss.
(15) DO(sp)+0(ss) = O(s2+s3) and(s) + O(ss) = O(s2 + 3).
(16) —U(s1) =0(—s1) and—0(sy) = D(—sy).
17) r-O()=0((r+0i)-2z) andr-0(z) = 0O((r +0i) - 2).
(18) DO(sz) —D(s3) = (s2—sg) andl(sz) — L(s) = [(s2 — 3)-
(19) rO(s1) =0((r+0i) sp) andr [(sy) = O((r +0i) s1).
(20) D(zs)=0(2) O(s1) — O(2) O(s1) andB(z ) = 0(2) O(sy) + 0(2) O(sy).
(21) DO(szss) = O(sp) O(ss) — D(sp) O(ss) andl(sz s3) = (s2) L(ss) + L(sz) O (s3).-

Let s; be a complex sequence and it be an increasing sequence of naturals. The functor
s1 N yields a complex sequence and is defined as follows:

(Def. 5) For everyn holds(s; Ni)(n) = s1(N1(n)).
One can prove the following proposition

(22) O(syNp) =0(s1)-NpandO(sp Ni) = 0O(sp) - Ng.
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Lets; be a complex sequence andHRdie a natural number. The functarf k yields a complex
sequence and is defined by:

(Def. 6) For evenyn holds(s; Tk)(n) = sp(n+Kk).
One can prove the following proposition
(23) DO(sy)Tk=0(s1 1K) andO(sy) Tk = O(sy Tk).

Lets; be a complex sequence. The fundtBl_q(s1)(a))«en Yields a complex sequence and is
defined by:

(Def. 7) (Sh_o(s1)(a))ken(0) = s1(0) and for everyn holds (S5 _o(s1)(a))ken(n + 1) =
(Za=o(s1)(a))ken(n) +s1(n+1).

Lets; be a complex sequence. The funcyos; yielding an element of is defined by:

(Def. 8) ¥ 51 =1lim((Fa_o(S1)(a))ken)-

One can prove the following propositions:

(24) If for everyn holdss;(n) = Oc, then for everym holds (3 §_o(s1)(a))ken(m) = Oc.
(25) If for everyn holdss;(n) = Oc, then for everymholds (3 §_g|s1|(a))ken(m) = 0.

(26)  (Zo—o D (s1)(0))ken = D((Ta—o(S) (@) ken) and(Fg_o (1) (@))ken = O((a—0(S2) (@) )ken)-
@7) (Ya—o(s2)(@))ken + (Zo—0(S8)(@))ken = (Fa—o(S2+S8)(A) ken-

(28) (Yo—o(s2)(@))ken — (Zo—0(S8)(@))ken = (Fg—o(S2 —S8)(A) ken-

(29) (Ta-0(z%)(@))ken = Z(Tg—o(S1)(a))ken

(30) [(Xa=0(s1)(0))ken(K)| < (Fa=osl(a))ken (k).
(31) [(Xa=0(s1)(0))ken (M) = (Ta—o(S1) (@) )ken (M| < [(Ta—o IS1l(a))kern (M) — (Ta—oS1/(@) Jken (M-

(32) (Ya—ob(su)(m))ken Tk = O((Xa=0(S1)(0))ken TK) and (3a_oL(s1)(0))ken Tk =
O((Za=o(s1) (@) Jken TK).

(83) Iffor everyn holdssy(n) = s1(0), then(T§_o(S111)(0))ken = (T §—0(S1)(A))ken T1—Sp.

(34) (3§-ols1l(a))ken is non-decreasing.

Lets; be a complex sequence. Note thgf_ [s1|(a))ken is non-decreasing.
We now state three propositions:

(385) If for every n such thatn < m holds s;(n) = s3(n), then (3§_o(S2)(0))ken(mM) =
(Za—0(s8)(a0) Jken(m).
1o AL

(36) If 1¢ # z, then for everyn holds (3 §_o((Z)ken) () )ken(n) = 1C_NZ .

(37) If z+# 1¢ and for everyn holds si(n+ 1) = z- s1(n), then for everyn holds
1 _Zn+l
(Z6—0(s)(@))ken(n) = s1(0) - =774~
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3. CONVERGENCE OFCOMPLEX SEQUENCES
The following four propositions are true:

(38) Leta, bbe sequences of real numbers ark a complex sequence. Suppose that for every
n holds(c(n)) = a(n) andd(c(n)) = b(n). Thenais convergent and is convergent if and
only if cis convergent.

(39) Leta, b be convergent sequences of real numberscame a complex sequence. Suppose
that for everyn holdsO(c(n)) = a(n) andO(c(n)) = b(n). Thenc is convergent and lim=
lima+lim bi.

(40) Leta, b be sequences of real numbers artk a convergent complex sequence. Suppose
that for everyn holds OJ(c(n)) = a(n) andO(c(n)) = b(n). Thena is convergent and is
convergent and lira= O(lim ¢) and limb = O(lim c).

(41) For every convergent complex sequeabelds](c) is convergent andl(c) is convergent
and limd(c) = O(limc) and limO(c) = O(lim ¢).

Let c be a convergent complex sequence. Observeifie) is convergent andl(c) is conver-
gent.
Next we state several propositions:

(42) Letcbe a complex sequence. Supp@se) is convergent andl(c) is convergent. Then
is convergent anfll(limc¢) = lim O(c) andd(lim ¢) = lim O(c).

(43) If0< |z and|z] < 1 ands;(0) = z and for everyn holdssi(n+ 1) = si(n) - z, thens; is
convergent and lirs; = Oc.

44) If |z < 1 and for evenyn holdss;(n) = z”*l, thens; is convergent and lirsy = Oc.
N

(45) Ifr > 0 and there exists1such that for every such than > mholds|s;(n)| > r, then|s|
is not convergent or lirfs; | # 0.

(46) s is convergent iff for evenp such that O< p there exist® such that for everyn such that
n < mholds|s;(m) — sy (n)| < p.

(47) Supposs; is convergent. Let givep. Suppose & p. Then there exista such that for all
natural numbers, | such than < mandn <1 holds|s;(m) —si(1)| < p.

(48) Iffor everyn holds|s;(n)| <r1(n) andr; is convergent and limy = 0, thens; is convergent
and lims; = Oc.

4. SUMMABLE AND ABSOLUTELY SUMMABLE COMPLEX SEQUENCES

Letsi, s, be complex sequences. We say thas a subsequence ef if and only if:
(Def. 9) There existdl; such thats; = s, Ns.

Next we state three propositions:

(49) If 51 is a subsequence gf, then(s;) is a subsequence af(sy) and(s;) is a subse-
quence ofl(sp).

(50) If s is a subsequence sf ands; is a subsequence &f, thens; is a subsequence sf.
(51) If 1 is bounded, then there exigswhich is a subsequence sifand convergent.
Lets; be a complex sequence. We say that summable if and only if:

(Def. 10) (T&_o(s1)(a))ken is convergent.
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Let us observe that there exists a complex sequence which is summable.
Lets; be a summable complex sequence. Observe §aty(si)(a))xen is convergent.
Let us consides;. We say thas; is absolutely summable if and only if:

(Def. 11) |s1] is summable.

Next we state the proposition
(52) If for everyn holdss; (n) = Oc, thens; is absolutely summable.

Let us mention that there exists a complex sequence which is absolutely summable.
Lets; be an absolutely summable complex sequence. Observisithiastsummable.
Next we state the proposition

(53) If s is summable, theg is convergent and lirgp = O¢.

Let us note that every complex sequence which is summable is also convergent.
One can prove the following proposition

(54) If 51 is summable, thefl(s;) is summable andl(s;) is summable an§ s; = S O(s1) +
Y O(sy)i.

Lets; be a summable complex sequence. Note fh@ ) is summable andl(s;) is summable.
The following propositions are true:

(55) If s is summable andz is summable, thes, + sz is summable an§ (S +3) =Y S+
5 Ss.

(56) If s is summable andz is summable, thes, — sz is summable an§ (s, — ) =Y s —
2 S

Let sy, s3 be summable complex sequences. One can checkthag is summable ang, — s3
is summable.
One can prove the following proposition

(57) If sy issummable, thems is summable an§ (zs) =z-5 5.

Let zbe an element of and lets; be a summable complex sequence. One can check that
is summable.
Next we state two propositions:

(58) If O(s1) is summable andl(s;) is summable, theg; is summable an§ s; = S 0(s1) +
S O(sp)i.

(59) If 5 is summable, then for everyholdss; T nis summable.

Let s; be a summable complex sequence anchlee a natural number. Note that{ n is
summable.
We now state three propositions:

(60) If there exists such thatks; T nis summable, thes, is summable.
(61) If s;is summable, then for everyholdsy s; = (3 §_o(S1)(Q))ken(n) + ¥ (51T (n+1)).
(62) (S&_olsi|(a))ken is upper bounded if§; is absolutely summable.

Lets; be an absolutely summable complex sequence. Observésthag|si|(a))cen is upper
bounded.
Next we state two propositions:
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(63) s is summable iff for evenp such that G< p there exists such that for everyn such that
n < mholds|(Fg_o(s1)(@))xen (M) — (Ta—o(S1)(@))xen (M| < p.

(64) If 5 is absolutely summable, thenis summable.

Let us note that every complex sequence which is absolutely summable is also summable.
Let us note that there exists a complex sequence which is absolutely summable.
The following propositions are true:

(65) If |7 < 1, then(z)xey is summable ang ((Z)xen) = 125

1c-2z

(66) If |z <1 and for everyn holdss;(n+1) = z-s1(n), thens; is summable and s, = 15;(9)2'

(67) Ifrzis summable and there existssuch that for every such thaim < n holds|sz(n)| <
r(n), thensz is absolutely summable.

(68) Suppose for evenyholds 0< |sp|(n) and|s,|(n) < |s3|(n) andsz is absolutely summable.
Thens; is absolutely summable arls;| < 5 |s3].

(69) If for everyn holds|s;|(n) > 0 and there existm such that for everyr such thatn > m

holds ‘S‘ls“l("‘(:j) > 1, thens; is not absolutely summable.

(70) If for everyn holdsry(n) = {/|s1|(n) andr is convergent and limp < 1, thens; is abso-
lutely summabile.

(71) |If for everyn holdsra(n) = {/|s1|(n) and there existen such that for every such that
m < n holdsrz(n) > 1, then|s;| is not summable.

(72) If for everyn holdsrz(n) = {/|s1]/(n) andrz is convergent and lim > 1, thens; is not
absolutely summable.

(73) Supposés:| is non-increasing and for everyholdsrz(n) = 2" |s;1|(2"). Thens; is abso-
lutely summable if and only if; is summable.

(74) If p> 1 and for evenyn such than > 1 holds|s; |(n) = n—lp, thens; is absolutely summable.

(75) If p <1 and for everyn such thatn > 1 holds|s;|(n) = n—lp, thens; is not absolutely
summable.

76) If for everyn holdss, (n) # Oc andra(n) = 5™ andr, is convergent and limp < 1,
Is1/(n)
thens; is absolutely summable.

(77) If for everyn holdss; (n) # Oc and there existen such that for every such thain > m

holds ‘S‘ls‘l(%l) > 1, thens, is not absolutely summable.
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