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The articles [16], [3], [15], [6], [7], [17], [4], [10], [8], [2], [9], [12], [14], [5], [1], [11], and [13]
provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following convention:r1, r2, r3 are sequences of real numbers,s1, s2,
s3 are complex sequences,k, n, m are natural numbers, andp, r are real numbers.

We now state three propositions:

(1) (n+1)+0i 6= 0C and 0+(n+1)i 6= 0C.

(2) If for everyn holdsr1(n) = 0, then for everym holds(∑κ
α=0|r1|(α))κ∈N(m) = 0.

(3) If for everyn holdsr1(n) = 0, thenr1 is absolutely summable.

Let us observe that there exists a sequence of real numbers which is absolutely summable.
Let us note that every sequence of real numbers which is summable is also convergent.
Let us mention that every sequence of real numbers which is absolutely summable is also

summable.
Let us mention that there exists a sequence of real numbers which is absolutely summable.
The following propositions are true:

(4) Supposer1 is convergent. Let givenp. Suppose 0< p. Then there existsn such that for all
natural numbersm, l such thatn≤m andn≤ l holds|r1(m)− r1(l)|< p.

(5) If for everyn holdsr1(n)≤ p, then for all natural numbersn, l holds(∑κ
α=0(r1)(α))κ∈N(n+

l)− (∑κ
α=0(r1)(α))κ∈N(n)≤ p· l .

(6) If for everyn holdsr1(n)≤ p, then for everyn holds(∑κ
α=0(r1)(α))κ∈N(n)≤ p· (n+1).

(7) If for every n such thatn≤ m holds r2(n) ≤ p · r3(n), then (∑κ
α=0(r2)(α))κ∈N(m) ≤ p ·

(∑κ
α=0(r3)(α))κ∈N(m).

(8) Suppose that for everyn such thatn ≤ m holds r2(n) ≤ p · r3(n). Let given n. Sup-
posen ≤ m. Let l be a natural number. Ifn+ l ≤ m, then (∑κ

α=0(r2)(α))κ∈N(n+ l)−
(∑κ

α=0(r2)(α))κ∈N(n)≤ p· ((∑κ
α=0(r3)(α))κ∈N(n+ l)− (∑κ

α=0(r3)(α))κ∈N(n)).
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(9) If for every n holds 0 ≤ r1(n), then for all n, m such that n ≤ m holds
|(∑κ

α=0(r1)(α))κ∈N(m)−(∑κ
α=0(r1)(α))κ∈N(n)|=(∑κ

α=0(r1)(α))κ∈N(m)−(∑κ
α=0(r1)(α))κ∈N(n)

and for everyn holds|(∑κ
α=0(r1)(α))κ∈N(n)|= (∑κ

α=0(r1)(α))κ∈N(n).

(10) If s2 is convergent ands3 is convergent and lim(s2−s3) = 0C, then lims2 = lim s3.

2. THE OPERATIONS ONCOMPLEX SEQUENCES

In the sequelz is an element ofC andN1 is an increasing sequence of naturals.
Let z be an element ofC. The functor(zκ)κ∈N yielding a complex sequence is defined by:

(Def. 1) (zκ)κ∈N(0) = 1C and for everyn holds(zκ)κ∈N(n+1) = (zκ)κ∈N(n) ·z.

Let zbe an element ofC and letn be a natural number. The functorzn
N yielding an element ofC

is defined by:

(Def. 2) zn
N = (zκ)κ∈N(n).

One can prove the following proposition

(11) z0
N = 1C.

Let c be a complex sequence. The functorℜ(c) yields a sequence of real numbers and is defined
by:

(Def. 3) For everyn holdsℜ(c)(n) = ℜ(c(n)).

Let c be a complex sequence. The functorℑ(c) yielding a sequence of real numbers is defined
as follows:

(Def. 4) For everyn holdsℑ(c)(n) = ℑ(c(n)).

Next we state a number of propositions:

(12) |z| ≤ |ℜ(z)|+ |ℑ(z)|.

(13) |ℜ(z)| ≤ |z| and|ℑ(z)| ≤ |z|.

(14) If ℜ(s2) = ℜ(s3) andℑ(s2) = ℑ(s3), thens2 = s3.

(15) ℜ(s2)+ℜ(s3) = ℜ(s2 +s3) andℑ(s2)+ℑ(s3) = ℑ(s2 +s3).

(16) −ℜ(s1) = ℜ(−s1) and−ℑ(s1) = ℑ(−s1).

(17) r ·ℜ(z) = ℜ((r +0i) ·z) andr ·ℑ(z) = ℑ((r +0i) ·z).

(18) ℜ(s2)−ℜ(s3) = ℜ(s2−s3) andℑ(s2)−ℑ(s3) = ℑ(s2−s3).

(19) r ℜ(s1) = ℜ((r +0i) s1) andr ℑ(s1) = ℑ((r +0i) s1).

(20) ℜ(z s1) = ℜ(z) ℜ(s1)−ℑ(z) ℑ(s1) andℑ(z s1) = ℜ(z) ℑ(s1)+ℑ(z) ℜ(s1).

(21) ℜ(s2 s3) = ℜ(s2) ℜ(s3)−ℑ(s2) ℑ(s3) andℑ(s2 s3) = ℜ(s2) ℑ(s3)+ℑ(s2) ℜ(s3).

Let s1 be a complex sequence and letN1 be an increasing sequence of naturals. The functor
s1 N1 yields a complex sequence and is defined as follows:

(Def. 5) For everyn holds(s1 N1)(n) = s1(N1(n)).

One can prove the following proposition

(22) ℜ(s1 N1) = ℜ(s1) ·N1 andℑ(s1 N1) = ℑ(s1) ·N1.
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Let s1 be a complex sequence and letk be a natural number. The functors1↑k yields a complex
sequence and is defined by:

(Def. 6) For everyn holds(s1↑k)(n) = s1(n+k).

One can prove the following proposition

(23) ℜ(s1)↑k = ℜ(s1↑k) andℑ(s1)↑k = ℑ(s1↑k).

Let s1 be a complex sequence. The functor(∑κ
α=0(s1)(α))κ∈N yields a complex sequence and is

defined by:

(Def. 7) (∑κ
α=0(s1)(α))κ∈N(0) = s1(0) and for every n holds (∑κ

α=0(s1)(α))κ∈N(n + 1) =
(∑κ

α=0(s1)(α))κ∈N(n)+s1(n+1).

Let s1 be a complex sequence. The functor∑s1 yielding an element ofC is defined by:

(Def. 8) ∑s1 = lim((∑κ
α=0(s1)(α))κ∈N).

One can prove the following propositions:

(24) If for everyn holdss1(n) = 0C, then for everymholds(∑κ
α=0(s1)(α))κ∈N(m) = 0C.

(25) If for everyn holdss1(n) = 0C, then for everymholds(∑κ
α=0 |s1|(α))κ∈N(m) = 0.

(26) (∑κ
α=0 ℜ(s1)(α))κ∈N = ℜ((∑κ

α=0(s1)(α))κ∈N) and(∑κ
α=0 ℑ(s1)(α))κ∈N = ℑ((∑κ

α=0(s1)(α))κ∈N).

(27) (∑κ
α=0(s2)(α))κ∈N +(∑κ

α=0(s3)(α))κ∈N = (∑κ
α=0(s2 +s3)(α))κ∈N.

(28) (∑κ
α=0(s2)(α))κ∈N− (∑κ

α=0(s3)(α))κ∈N = (∑κ
α=0(s2−s3)(α))κ∈N.

(29) (∑κ
α=0(z s1)(α))κ∈N = z(∑κ

α=0(s1)(α))κ∈N.

(30) |(∑κ
α=0(s1)(α))κ∈N(k)| ≤ (∑κ

α=0 |s1|(α))κ∈N(k).

(31) |(∑κ
α=0(s1)(α))κ∈N(m)−(∑κ

α=0(s1)(α))κ∈N(n)| ≤ |(∑κ
α=0 |s1|(α))κ∈N(m)−(∑κ

α=0 |s1|(α))κ∈N(n)|.

(32) (∑κ
α=0 ℜ(s1)(α))κ∈N ↑ k = ℜ((∑κ

α=0(s1)(α))κ∈N ↑ k) and (∑κ
α=0 ℑ(s1)(α))κ∈N ↑ k =

ℑ((∑κ
α=0(s1)(α))κ∈N ↑k).

(33) If for everyn holdss2(n) = s1(0), then(∑κ
α=0(s1↑1)(α))κ∈N = (∑κ

α=0(s1)(α))κ∈N ↑1−s2.

(34) (∑κ
α=0 |s1|(α))κ∈N is non-decreasing.

Let s1 be a complex sequence. Note that(∑κ
α=0 |s1|(α))κ∈N is non-decreasing.

We now state three propositions:

(35) If for every n such thatn ≤ m holds s2(n) = s3(n), then (∑κ
α=0(s2)(α))κ∈N(m) =

(∑κ
α=0(s3)(α))κ∈N(m).

(36) If 1C 6= z, then for everyn holds(∑κ
α=0((z

κ)κ∈N)(α))κ∈N(n) = 1C−zn+1
N

1C−z .

(37) If z 6= 1C and for every n holds s1(n + 1) = z · s1(n), then for every n holds

(∑κ
α=0(s1)(α))κ∈N(n) = s1(0) · 1C−zn+1

N
1C−z .
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3. CONVERGENCE OFCOMPLEX SEQUENCES

The following four propositions are true:

(38) Leta, b be sequences of real numbers andc be a complex sequence. Suppose that for every
n holdsℜ(c(n)) = a(n) andℑ(c(n)) = b(n). Thena is convergent andb is convergent if and
only if c is convergent.

(39) Leta, b be convergent sequences of real numbers andc be a complex sequence. Suppose
that for everyn holdsℜ(c(n)) = a(n) andℑ(c(n)) = b(n). Thenc is convergent and limc =
lim a+ lim bi.

(40) Leta, b be sequences of real numbers andc be a convergent complex sequence. Suppose
that for everyn holdsℜ(c(n)) = a(n) andℑ(c(n)) = b(n). Thena is convergent andb is
convergent and lima = ℜ(lim c) and limb = ℑ(lim c).

(41) For every convergent complex sequencec holdsℜ(c) is convergent andℑ(c) is convergent
and limℜ(c) = ℜ(lim c) and limℑ(c) = ℑ(lim c).

Let c be a convergent complex sequence. Observe thatℜ(c) is convergent andℑ(c) is conver-
gent.

Next we state several propositions:

(42) Letc be a complex sequence. Supposeℜ(c) is convergent andℑ(c) is convergent. Thenc
is convergent andℜ(lim c) = lim ℜ(c) andℑ(lim c) = lim ℑ(c).

(43) If 0 < |z| and |z| < 1 ands1(0) = z and for everyn holdss1(n+ 1) = s1(n) · z, thens1 is
convergent and lims1 = 0C.

(44) If |z|< 1 and for everyn holdss1(n) = zn+1
N , thens1 is convergent and lims1 = 0C.

(45) If r > 0 and there existsmsuch that for everyn such thatn≥mholds|s1(n)| ≥ r, then|s1|
is not convergent or lim|s1| 6= 0.

(46) s1 is convergent iff for everyp such that 0< p there existsn such that for everymsuch that
n≤mholds|s1(m)−s1(n)|< p.

(47) Supposes1 is convergent. Let givenp. Suppose 0< p. Then there existsn such that for all
natural numbersm, l such thatn≤mandn≤ l holds|s1(m)−s1(l)|< p.

(48) If for everyn holds|s1(n)| ≤ r1(n) andr1 is convergent and limr1 = 0, thens1 is convergent
and lims1 = 0C.

4. SUMMABLE AND ABSOLUTELY SUMMABLE COMPLEX SEQUENCES

Let s1, s2 be complex sequences. We say thats1 is a subsequence ofs2 if and only if:

(Def. 9) There existsN1 such thats1 = s2 N1.

Next we state three propositions:

(49) If s1 is a subsequence ofs2, thenℜ(s1) is a subsequence ofℜ(s2) andℑ(s1) is a subse-
quence ofℑ(s2).

(50) If s1 is a subsequence ofs2 ands2 is a subsequence ofs3, thens1 is a subsequence ofs3.

(51) If s1 is bounded, then there existss2 which is a subsequence ofs1 and convergent.

Let s1 be a complex sequence. We say thats1 is summable if and only if:

(Def. 10) (∑κ
α=0(s1)(α))κ∈N is convergent.
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Let us observe that there exists a complex sequence which is summable.
Let s1 be a summable complex sequence. Observe that(∑κ

α=0(s1)(α))κ∈N is convergent.
Let us considers1. We say thats1 is absolutely summable if and only if:

(Def. 11) |s1| is summable.

Next we state the proposition

(52) If for everyn holdss1(n) = 0C, thens1 is absolutely summable.

Let us mention that there exists a complex sequence which is absolutely summable.
Let s1 be an absolutely summable complex sequence. Observe that|s1| is summable.
Next we state the proposition

(53) If s1 is summable, thens1 is convergent and lims1 = 0C.

Let us note that every complex sequence which is summable is also convergent.
One can prove the following proposition

(54) If s1 is summable, thenℜ(s1) is summable andℑ(s1) is summable and∑s1 = ∑ℜ(s1)+
∑ℑ(s1)i.

Let s1 be a summable complex sequence. Note thatℜ(s1) is summable andℑ(s1) is summable.
The following propositions are true:

(55) If s2 is summable ands3 is summable, thens2 + s3 is summable and∑(s2 + s3) = ∑s2 +
∑s3.

(56) If s2 is summable ands3 is summable, thens2− s3 is summable and∑(s2− s3) = ∑s2−
∑s3.

Let s2, s3 be summable complex sequences. One can check thats2 +s3 is summable ands2−s3

is summable.
One can prove the following proposition

(57) If s1 is summable, thenz s1 is summable and∑(z s1) = z·∑s1.

Let z be an element ofC and lets1 be a summable complex sequence. One can check thatz s1
is summable.

Next we state two propositions:

(58) If ℜ(s1) is summable andℑ(s1) is summable, thens1 is summable and∑s1 = ∑ℜ(s1)+
∑ℑ(s1)i.

(59) If s1 is summable, then for everyn holdss1↑n is summable.

Let s1 be a summable complex sequence and letn be a natural number. Note thats1 ↑ n is
summable.

We now state three propositions:

(60) If there existsn such thats1↑n is summable, thens1 is summable.

(61) If s1 is summable, then for everyn holds∑s1 = (∑κ
α=0(s1)(α))κ∈N(n)+∑(s1↑ (n+1)).

(62) (∑κ
α=0 |s1|(α))κ∈N is upper bounded iffs1 is absolutely summable.

Let s1 be an absolutely summable complex sequence. Observe that(∑κ
α=0 |s1|(α))κ∈N is upper

bounded.
Next we state two propositions:
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(63) s1 is summable iff for everyp such that 0< p there existsn such that for everymsuch that
n≤m holds|(∑κ

α=0(s1)(α))κ∈N(m)− (∑κ
α=0(s1)(α))κ∈N(n)|< p.

(64) If s1 is absolutely summable, thens1 is summable.

Let us note that every complex sequence which is absolutely summable is also summable.
Let us note that there exists a complex sequence which is absolutely summable.
The following propositions are true:

(65) If |z|< 1, then(zκ)κ∈N is summable and∑((zκ)κ∈N) = 1C
1C−z.

(66) If |z|< 1 and for everyn holdss1(n+1) = z·s1(n), thens1 is summable and∑s1 = s1(0)
1C−z.

(67) If r2 is summable and there existsm such that for everyn such thatm≤ n holds|s3(n)| ≤
r2(n), thens3 is absolutely summable.

(68) Suppose for everyn holds 0≤ |s2|(n) and|s2|(n)≤ |s3|(n) ands3 is absolutely summable.
Thens2 is absolutely summable and∑ |s2| ≤ ∑ |s3|.

(69) If for everyn holds |s1|(n) > 0 and there existsm such that for everyn such thatn≥ m

holds |s1|(n+1)
|s1|(n) ≥ 1, thens1 is not absolutely summable.

(70) If for everyn holdsr2(n) = n
√
|s1|(n) andr2 is convergent and limr2 < 1, thens1 is abso-

lutely summable.

(71) If for everyn holds r2(n) = n
√
|s1|(n) and there existsm such that for everyn such that

m≤ n holdsr2(n)≥ 1, then|s1| is not summable.

(72) If for everyn holdsr2(n) = n
√
|s1|(n) andr2 is convergent and limr2 > 1, thens1 is not

absolutely summable.

(73) Suppose|s1| is non-increasing and for everyn holdsr2(n) = 2n · |s1|(2n). Thens1 is abso-
lutely summable if and only ifr2 is summable.

(74) If p> 1 and for everyn such thatn≥ 1 holds|s1|(n) = 1
np , thens1 is absolutely summable.

(75) If p ≤ 1 and for everyn such thatn ≥ 1 holds |s1|(n) = 1
np , then s1 is not absolutely

summable.

(76) If for everyn holdss1(n) 6= 0C andr2(n) = |s1|(n+1)
|s1|(n) andr2 is convergent and limr2 < 1,

thens1 is absolutely summable.

(77) If for everyn holdss1(n) 6= 0C and there existsm such that for everyn such thatn≥ m

holds |s1|(n+1)
|s1|(n) ≥ 1, thens1 is not absolutely summable.
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