Strong Arithmetic of Real Numbers

Andrzej Trybulec Warsaw University Białystok

Summary. This abstract contains the second part of the axiomatics of the Mizar system (the first part is in abstract [4]). The axioms listed here characterize the Mizar built-in concepts that are automatically attached to every Mizar article. We give definitional axioms of the following concepts: element, subset, Cartesian product, domain (non empty subset), subdomain (non empty subset of a domain), set domain (domain consisting of sets). Axioms of strong arithmetics of real numbers are also included.

MML Identifier: AXIOMS.

WWW: http://mizar.org/JFM/Addenda/axioms.html

The articles [4], [3], [6], [1], [2], and [5] provide the notation and terminology for this paper. We adopt the following rules: x, y, z are real numbers, k is a natural number, and i is an element of \mathbb{N} .

One can prove the following propositions:

- $(19)^{1}$ There exists y such that x + y = 0.
- (20) If $x \neq 0$, then there exists y such that $x \cdot y = 1$.
- (21) If $x \le y$ and $y \le x$, then x = y.
- (22) If $x \le y$ and $y \le z$, then $x \le z$.
- $(24)^2$ If $x \le y$, then $x + z \le y + z$.
- (25) If $x \le y$ and $0 \le z$, then $x \cdot z \le y \cdot z$.
- (26) Let X, Y be subsets of \mathbb{R} . Suppose that for all x, y such that $x \in X$ and $y \in Y$ holds $x \le y$. Then there exists z such that for all x, y such that $x \in X$ and $y \in Y$ holds $x \le z$ and $z \le y$.
- $(28)^3$ If $x \in \mathbb{N}$ and $y \in \mathbb{N}$, then $x + y \in \mathbb{N}$.
- (29) For every subset A of \mathbb{R} such that $0 \in A$ and for every x such that $x \in A$ holds $x + 1 \in A$ holds $\mathbb{N} \subseteq A$.
- (30) $k = \{i : i < k\}.$

¹ The propositions (1)–(18) have been removed.

² The proposition (23) has been removed.

³ The proposition (27) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/ordinal2.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [5] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- $[6] \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. html. | the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. html.$

Received January 1, 1989

Published January 2, 2004