On a Mathematical Model of Programs

Yatsuka Nakamura Shinshu University Nagano Andrzej Trybulec Warsaw University Białystok

Summary. We continue the work on mathematical modeling of hardware and software started in [11]. The main objective of this paper is the definition of a program. We start with the concept of partial product, i.e. the set of all partial functions f from I to $\bigcup_{i \in I} A_i$, fulfilling the condition $f.i \in A_i$ for $i \in domf$. The computation and the result of a computation are defined in usual way. A finite partial state is called autonomic if the result of a computation starting with it does not depend on the remaining memory and an AMI is called programmable if it has a non empty autonomic partial finite state. We prove the consistency of the following set of properties of an AMI: data-oriented, halting, steady-programmed, realistic and programmable. For this purpose we define a trivial AMI. It has only the instruction counter and one instruction location. The only instruction of it is the halt instruction. A preprogram is a finite partial state that halts. We conclude with the definition of a program of a partial function F mapping the set of the finite partial states into itself. It is a finite partial state f such that for every finite partial state f the result of any computation starting with f includes f incl

MML Identifier: AMI 2.

WWW: http://mizar.org/JFM/Vol4/ami_2.html

The articles [15], [14], [7], [20], [2], [17], [3], [21], [5], [6], [12], [13], [18], [1], [8], [16], [9], [10], [4], and [19] provide the notation and terminology for this paper.

In this paper x denotes a set and i, k denote natural numbers.

The element $Halt_{SCM}$ of \mathbb{Z}_9 is defined as follows:

(Def. 1) $Halt_{SCM} = 0$.

The subset Data-Loc_{SCM} of \mathbb{N} is defined by:

(Def. 2) Data-Loc_{SCM} = $\{2 \cdot k + 1\}$.

The subset Instr-Loc_{SCM} of \mathbb{N} is defined by:

(Def. 3) Instr-Loc_{SCM} = $\{2 \cdot k : k > 0\}$.

Let us observe that Data-Loc_{SCM} is non empty and Instr-Loc_{SCM} is non empty.

We use the following convention: I, J, K denote elements of \mathbb{Z}_9 , a, a_1 , a_2 denote elements of Instr-Loc_{SCM}, and b, b_1 , b_2 , c, c_1 denote elements of Data-Loc_{SCM}.

The subset Instr_{SCM} of $[:\mathbb{Z}_9, (\bigcup \{\mathbb{Z}\} \cup \mathbb{N})^*:]$ is defined by:

(Def. 4)
$$\operatorname{Instr}_{SCM} = \{ \langle \operatorname{Halt}_{SCM}, \emptyset \rangle \} \cup \{ \langle J, \langle a \rangle \rangle : J = 6 \} \cup \{ \langle K, \langle a_1, b_1 \rangle \rangle : K \in \{7, 8\} \} \cup \{ \langle I, \langle b, c \rangle \rangle : I \in \{1, 2, 3, 4, 5\} \}.$$

The following proposition is true

 $(2)^1 \quad \langle 0, \emptyset \rangle \in Instr_{SCM}.$

One can check that Instr_{SCM} is non empty.

One can prove the following three propositions:

- (3) $\langle 6, \langle a_2 \rangle \rangle \in Instr_{SCM}$.
- (4) If $x \in \{7, 8\}$, then $\langle x, \langle a_2, b_2 \rangle \rangle \in Instr_{SCM}$.
- (5) If $x \in \{1, 2, 3, 4, 5\}$, then $\langle x, \langle b_1, c_1 \rangle \rangle \in Instr_{SCM}$.

The function OK_{SCM} from \mathbb{N} into $\{\mathbb{Z}\} \cup \{Instr_{SCM}, Instr-Loc_{SCM}\}$ is defined by:

(Def. 5) $OK_{SCM}(0) = Instr-Loc_{SCM}$ and for every natural number k holds $OK_{SCM}(2 \cdot k + 1) = \mathbb{Z}$ and $OK_{SCM}(2 \cdot k + 2) = Instr_{SCM}$.

One can prove the following propositions:

- (6) Instr-Loc_{SCM} $\neq \mathbb{Z}$ and Instr_{SCM} $\neq \mathbb{Z}$ and Instr-Loc_{SCM} \neq Instr_{SCM}.
- (7) $OK_{SCM}(i) = Instr-Loc_{SCM} \text{ iff } i = 0.$
- (8) $OK_{SCM}(i) = \mathbb{Z}$ iff there exists k such that $i = 2 \cdot k + 1$.
- (9) $OK_{SCM}(i) = Instr_{SCM}$ iff there exists k such that $i = 2 \cdot k + 2$.

A **SCM**-state is an element of $\prod (OK_{SCM})$.

Next we state several propositions:

- (10) For every element a of Data-Loc_{SCM} holds $OK_{SCM}(a) = \mathbb{Z}$.
- (11) For every element a of Instr-Loc_{SCM} holds $OK_{SCM}(a) = Instr_{SCM}$.
- (12) For every element a of Instr-Loc_{SCM} and for every element t of Data-Loc_{SCM} holds $a \neq t$.
- (13) $\pi_0 \prod (OK_{SCM}) = Instr-Loc_{SCM}$.
- (14) For every element a of Data-Loc_{SCM} holds $\pi_a \prod (OK_{SCM}) = \mathbb{Z}$.
- (15) For every element *a* of Instr-Loc_{SCM} holds $\pi_a \prod (OK_{SCM}) = Instr_{SCM}$.

Let s be a **SCM**-state. The functor IC_s yielding an element of Instr-Loc_{SCM} is defined by:

(Def. 6) $IC_s = s(0)$.

Let s be a **SCM**-state and let u be an element of Instr-Loc_{SCM}. The functor $Chg_{SCM}(s,u)$ yields a **SCM**-state and is defined as follows:

(Def. 7) $Chg_{SCM}(s, u) = s + \cdot (0 \mapsto u)$.

We now state three propositions:

- (16) For every **SCM**-state *s* and for every element *u* of Instr-Loc_{SCM} holds $(Chg_{SCM}(s,u))(0) = u$.
- (17) For every **SCM**-state s and for every element u of Instr-Loc_{SCM} and for every element m_1 of Data-Loc_{SCM} holds $(\operatorname{Chg}_{\operatorname{SCM}}(s,u))(m_1) = s(m_1)$.
- (18) For every **SCM**-state *s* and for all elements *u*, *v* of Instr-Loc_{SCM} holds $(Chg_{SCM}(s, u))(v) = s(v)$.

Let s be a SCM-state, let t be an element of Data-Loc_{SCM}, and let u be an integer. The functor $Chg_{SCM}(s,t,u)$ yields a SCM-state and is defined by:

¹ The proposition (1) has been removed.

(Def. 8) $Chg_{SCM}(s,t,u) = s + \cdot (t \mapsto u).$

Next we state four propositions:

- (19) For every **SCM**-state s and for every element t of Data-Loc_{SCM} and for every integer u holds $(\operatorname{Chg}_{SCM}(s,t,u))(0) = s(0)$.
- (20) For every **SCM**-state *s* and for every element *t* of Data-Loc_{SCM} and for every integer *u* holds $(\operatorname{Chg}_{SCM}(s,t,u))(t) = u$.
- (21) Let s be a SCM-state, t be an element of Data-Loc_{SCM}, u be an integer, and m_1 be an element of Data-Loc_{SCM}. If $m_1 \neq t$, then $(\text{Chg}_{SCM}(s,t,u))(m_1) = s(m_1)$.
- (22) Let *s* be a **SCM**-state, *t* be an element of Data-Loc_{SCM}, *u* be an integer, and *v* be an element of Instr-Loc_{SCM}. Then $(Chg_{SCM}(s,t,u))(v) = s(v)$.

Let x be an element of Instr_{SCM}. Let us assume that there exist elements m_1 , m_2 of Data-Loc_{SCM} and I such that $x = \langle I, \langle m_1, m_2 \rangle \rangle$. The functor x address₁ yielding an element of Data-Loc_{SCM} is defined as follows:

(Def. 9) There exists a finite sequence f of elements of Data-Loc_{SCM} such that $f = x_2$ and x address₁ = f_1 .

The functor x address₂ yields an element of Data-Loc_{SCM} and is defined by:

(Def. 10) There exists a finite sequence f of elements of Data-Loc_{SCM} such that $f = x_2$ and x address₂ = f_2 .

One can prove the following proposition

(23) For every element x of $Instr_{SCM}$ and for all elements m_1 , m_2 of $Data-Loc_{SCM}$ and for every I such that $x = \langle I, \langle m_1, m_2 \rangle \rangle$ holds x address $x = m_1$ and x address $x = m_2$.

Let x be an element of Instr_{SCM}. Let us assume that there exist an element m_1 of Instr-Loc_{SCM} and I such that $x = \langle I, \langle m_1 \rangle \rangle$. The functor x address_j yields an element of Instr-Loc_{SCM} and is defined as follows:

(Def. 11) There exists a finite sequence f of elements of Instr-Loc_{SCM} such that $f = x_2$ and x address_i = f_1 .

One can prove the following proposition

(24) For every element x of Instr_{SCM} and for every element m_1 of Instr-Loc_{SCM} and for every I such that $x = \langle I, \langle m_1 \rangle \rangle$ holds x address $_j = m_1$.

Let x be an element of Instr_{SCM}. Let us assume that there exist an element m_1 of Instr-Loc_{SCM}, an element m_2 of Data-Loc_{SCM}, and I such that $x = \langle I, \langle m_1, m_2 \rangle \rangle$. The functor x address $_j$ yields an element of Instr-Loc_{SCM} and is defined by:

(Def. 12) There exists an element m_1 of Instr-Loc_{SCM} and there exists an element m_2 of Data-Loc_{SCM} such that $\langle m_1, m_2 \rangle = x_2$ and x address $_i = \langle m_1, m_2 \rangle_1$.

The functor x address_c yielding an element of Data-Loc_{SCM} is defined by:

(Def. 13) There exists an element m_1 of Instr-Loc_{SCM} and there exists an element m_2 of Data-Loc_{SCM} such that $\langle m_1, m_2 \rangle = x_2$ and x address_c = $\langle m_1, m_2 \rangle_2$.

Next we state the proposition

(25) Let x be an element of Instr_{SCM}, m_1 be an element of Instr-Loc_{SCM}, m_2 be an element of Data-Loc_{SCM}, and given I. If $x = \langle I, \langle m_1, m_2 \rangle \rangle$, then x address_i = m_1 and x address_c = m_2 .

Let s be a **SCM**-state and let a be an element of Data-Loc_{SCM}. Note that s(a) is integer. Let D be a non empty set, let x, y be real numbers, and let a, b be elements of D. The functor $(x > y \rightarrow a, b)$ yields an element of D and is defined as follows:

(Def. 14)
$$(x > y \rightarrow a, b) = \begin{cases} a, & \text{if } x > y, \\ b, & \text{otherwise.} \end{cases}$$

Let d be an element of Instr-Loc_{SCM}. The functor Next(d) yields an element of Instr-Loc_{SCM} and is defined by:

(Def. 15)
$$Next(d) = d + 2$$
.

Let x be an element of Instr_{SCM} and let s be a **SCM**-state. The functor Exec-Res_{SCM}(x,s) yields a **SCM**-state and is defined as follows:

$$(\text{Def. 16}) \quad \text{Exec-Res}_{\text{SCM}}(x,s) = \begin{cases} \text{Chg}_{\text{SCM}}(s,x) & \text{address}_1,s(x) & \text{address}_1,s(x) & \text{address}_2), \text{Next}(\mathbf{IC}_s), & \text{if thereexistelements } m_1,m_2 \text{ of } \\ \text{Chg}_{\text{SCM}}(\text{Chg}_{\text{SCM}}(s,x) & \text{address}_1,s(x) & \text{address}_1) + s(x) & \text{address}_2), \text{Next}(\mathbf{IC}_s), & \text{if thereexistelements } \\ \text{Chg}_{\text{SCM}}(\text{Chg}_{\text{SCM}}(s,x) & \text{address}_1,s(x) & \text{address}_1) + s(x) & \text{address}_2), \text{Next}(\mathbf{IC}_s), & \text{if thereexistelements } \\ \text{Chg}_{\text{SCM}}(\text{Chg}_{\text{SCM}}(s,x) & \text{address}_1,s(x) & \text{address}_1) + s(x) & \text{address}_2), & \text{Next}(\mathbf{IC}_s), & \text{if thereexistelements } \\ \text{Chg}_{\text{SCM}}(c\text{hg}_{\text{SCM}}(s,x) & \text{address}_1,s(x) & \text{address}_1) + s(x) & \text{address}_2), & \text{Next}(\mathbf{IC}_s), & \text{if thereexistelements } \\ \text{Chg}_{\text{SCM}}(s,x) & \text{address}_1,s(x) & \text{address}_1,s(x) & \text{address}_2), & \text{Next}(\mathbf{IC}_s), & \text{if thereexistelements } \\ \text{Chg}_{\text{SCM}}(s,x) & \text{address}_1,s(x) & \text{address}_1,s(x) & \text{address}_1,s(x) & \text{address}_2,s(x) & \text{$$

The function $Exec_{SCM}$ from $Instr_{SCM}$ into $(\prod(OK_{SCM}))^{\prod(OK_{SCM})}$ is defined by:

(Def. 17) For every element x of $Instr_{SCM}$ and for every **SCM**-state y holds $Exec_{SCM}(x)(y) = Exec-Res_{SCM}(x,y)$.

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/nat 1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [3] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [8] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [10] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cat_2.html.
- [11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [12] Dariusz Surowik. Cyclic groups and some of their properties part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/gr_cy_1.html.
- [13] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain 1.html.
- [14] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumsetl.html.

- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.
- [17] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [18] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [19] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [21] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.

Received December 29, 1992

Published January 2, 2004