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Summary. We continue the work on mathematical modeling of hardware and soft-
ware started in [11]. The main objective of this paper is the definition of a program. We start
with the concept of partial product, i.e. the set of all partial functionsf from I to

⋃
i∈I Ai ,

fulfilling the condition f .i ∈ Ai for i ∈ dom f. The computation and the result of a compu-
tation are defined in usual way. A finite partial state is called autonomic if the result of a
computation starting with it does not depend on the remaining memory and an AMI is called
programmable if it has a non empty autonomic partial finite state. We prove the consistency
of the following set of properties of an AMI: data-oriented, halting, steady-programmed, real-
istic and programmable. For this purpose we define a trivial AMI. It has only the instruction
counter and one instruction location. The only instruction of it is the halt instruction. A pre-
program is a finite partial state that halts. We conclude with the definition of a program of a
partial functionF mapping the set of the finite partial states into itself. It is a finite partial state
s such that for every finite partial states′ ∈ domF the result of any computation starting with
s+s′ includesF.s′.

MML Identifier: AMI_2.

WWW: http://mizar.org/JFM/Vol4/ami_2.html

The articles [15], [14], [7], [20], [2], [17], [3], [21], [5], [6], [12], [13], [18], [1], [8], [16], [9], [10],
[4], and [19] provide the notation and terminology for this paper.

In this paperx denotes a set andi, k denote natural numbers.
The element HaltSCM of Z9 is defined as follows:

(Def. 1) HaltSCM = 0.

The subset Data-LocSCM of N is defined by:

(Def. 2) Data-LocSCM = {2·k+1}.

The subset Instr-LocSCM of N is defined by:

(Def. 3) Instr-LocSCM = {2·k : k > 0}.

Let us observe that Data-LocSCM is non empty and Instr-LocSCM is non empty.
We use the following convention:I , J, K denote elements ofZ9, a, a1, a2 denote elements of

Instr-LocSCM, andb, b1, b2, c, c1 denote elements of Data-LocSCM.
The subset InstrSCM of [:Z9, (

⋃
{Z}∪N)∗ :] is defined by:

(Def. 4) InstrSCM = {〈〈HaltSCM, /0〉〉}∪{〈〈J, 〈a〉〉〉 : J = 6}∪{〈〈K, 〈a1,b1〉〉〉 : K ∈ {7,8}}∪{〈〈I , 〈b,c〉〉〉 :
I ∈ {1,2,3,4,5}}.

The following proposition is true
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(2)1 〈〈0, /0〉〉 ∈ InstrSCM.

One can check that InstrSCM is non empty.
One can prove the following three propositions:

(3) 〈〈6, 〈a2〉〉〉 ∈ InstrSCM.

(4) If x∈ {7,8}, then〈〈x, 〈a2,b2〉〉〉 ∈ InstrSCM.

(5) If x∈ {1,2,3,4,5}, then〈〈x, 〈b1,c1〉〉〉 ∈ InstrSCM.

The function OKSCM from N into {Z}∪{InstrSCM, Instr-LocSCM} is defined by:

(Def. 5) OKSCM(0) = Instr-LocSCM and for every natural numberk holds OKSCM(2·k+1) = Z and
OKSCM(2·k+2) = InstrSCM.

One can prove the following propositions:

(6) Instr-LocSCM 6= Z and InstrSCM 6= Z and Instr-LocSCM 6= InstrSCM.

(7) OKSCM(i) = Instr-LocSCM iff i = 0.

(8) OKSCM(i) = Z iff there existsk such thati = 2·k+1.

(9) OKSCM(i) = InstrSCM iff there existsk such thati = 2·k+2.

A SCM-state is an element of∏(OKSCM).
Next we state several propositions:

(10) For every elementa of Data-LocSCM holds OKSCM(a) = Z.

(11) For every elementa of Instr-LocSCM holds OKSCM(a) = InstrSCM.

(12) For every elementa of Instr-LocSCM and for every elementt of Data-LocSCM holdsa 6= t.

(13) π0 ∏(OKSCM) = Instr-LocSCM.

(14) For every elementa of Data-LocSCM holdsπa ∏(OKSCM) = Z.

(15) For every elementa of Instr-LocSCM holdsπa ∏(OKSCM) = InstrSCM.

Let s be aSCM-state. The functorICs yielding an element of Instr-LocSCM is defined by:

(Def. 6) ICs = s(0).

Let sbe aSCM-state and letu be an element of Instr-LocSCM. The functor ChgSCM(s,u) yields
aSCM-state and is defined as follows:

(Def. 7) ChgSCM(s,u) = s+·(07−→. u).

We now state three propositions:

(16) For everySCM-statesand for every elementu of Instr-LocSCM holds(ChgSCM(s,u))(0) =
u.

(17) For everySCM-states and for every elementu of Instr-LocSCM and for every elementm1

of Data-LocSCM holds(ChgSCM(s,u))(m1) = s(m1).

(18) For everySCM-statesand for all elementsu, v of Instr-LocSCM holds(ChgSCM(s,u))(v) =
s(v).

Let s be aSCM-state, lett be an element of Data-LocSCM, and letu be an integer. The functor
ChgSCM(s, t,u) yields aSCM-state and is defined by:

1 The proposition (1) has been removed.
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(Def. 8) ChgSCM(s, t,u) = s+·(t 7−→. u).

Next we state four propositions:

(19) For everySCM-states and for every elementt of Data-LocSCM and for every integeru
holds(ChgSCM(s, t,u))(0) = s(0).

(20) For everySCM-states and for every elementt of Data-LocSCM and for every integeru
holds(ChgSCM(s, t,u))(t) = u.

(21) Let s be aSCM-state,t be an element of Data-LocSCM, u be an integer, andm1 be an
element of Data-LocSCM. If m1 6= t, then(ChgSCM(s, t,u))(m1) = s(m1).

(22) Letsbe aSCM-state,t be an element of Data-LocSCM, u be an integer, andv be an element
of Instr-LocSCM. Then(ChgSCM(s, t,u))(v) = s(v).

Let x be an element of InstrSCM. Let us assume that there exist elementsm1, m2 of Data-LocSCM

and I such thatx = 〈〈I , 〈m1,m2〉〉〉. The functorxaddress1 yielding an element of Data-LocSCM is
defined as follows:

(Def. 9) There exists a finite sequencef of elements of Data-LocSCM such that f = x2 and
xaddress1 = f1.

The functorxaddress2 yields an element of Data-LocSCM and is defined by:

(Def. 10) There exists a finite sequencef of elements of Data-LocSCM such that f = x2 and
xaddress2 = f2.

One can prove the following proposition

(23) For every elementx of InstrSCM and for all elementsm1, m2 of Data-LocSCM and for every
I such thatx = 〈〈I , 〈m1,m2〉〉〉 holdsxaddress1 = m1 andxaddress2 = m2.

Let x be an element of InstrSCM. Let us assume that there exist an elementm1 of Instr-LocSCM

andI such thatx= 〈〈I , 〈m1〉〉〉. The functorxaddressj yields an element of Instr-LocSCM and is defined
as follows:

(Def. 11) There exists a finite sequencef of elements of Instr-LocSCM such that f = x2 and
xaddressj = f1.

One can prove the following proposition

(24) For every elementx of InstrSCM and for every elementm1 of Instr-LocSCM and for everyI
such thatx = 〈〈I , 〈m1〉〉〉 holdsxaddressj = m1.

Let x be an element of InstrSCM. Let us assume that there exist an elementm1 of Instr-LocSCM,
an elementm2 of Data-LocSCM, andI such thatx = 〈〈I , 〈m1,m2〉〉〉. The functorxaddressj yields an
element of Instr-LocSCM and is defined by:

(Def. 12) There exists an elementm1 of Instr-LocSCM and there exists an elementm2 of Data-LocSCM

such that〈m1,m2〉= x2 andxaddressj = 〈m1,m2〉1.

The functorxaddressc yielding an element of Data-LocSCM is defined by:

(Def. 13) There exists an elementm1 of Instr-LocSCM and there exists an elementm2 of Data-LocSCM

such that〈m1,m2〉= x2 andxaddressc = 〈m1,m2〉2.

Next we state the proposition

(25) Letx be an element of InstrSCM, m1 be an element of Instr-LocSCM, m2 be an element of
Data-LocSCM, and givenI . If x = 〈〈I , 〈m1,m2〉〉〉, thenxaddressj = m1 andxaddressc = m2.
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Let s be aSCM-state and leta be an element of Data-LocSCM. Note thats(a) is integer.
Let D be a non empty set, letx, y be real numbers, and leta, b be elements ofD. The functor

(x > y→ a,b) yields an element ofD and is defined as follows:

(Def. 14) (x > y→ a,b) =
{

a, if x > y,
b, otherwise.

Let d be an element of Instr-LocSCM. The functor Next(d) yields an element of Instr-LocSCM

and is defined by:

(Def. 15) Next(d) = d+2.

Let x be an element of InstrSCM and letsbe aSCM-state. The functor Exec-ResSCM(x,s) yields
aSCM-state and is defined as follows:

(Def. 16) Exec-ResSCM(x,s)=



ChgSCM(ChgSCM(s,xaddress1,s(xaddress2)),Next(IC s)), if thereexistelementsm1, m2 of Data-LocSCM such thatx = 〈〈1, 〈m1,m2〉〉〉,
ChgSCM(ChgSCM(s,xaddress1,s(xaddress1)+s(xaddress2)),Next(ICs)), if thereexistelementsm1, m2 of Data-LocSCM such thatx = 〈〈2, 〈m1,m2〉〉〉,
ChgSCM(ChgSCM(s,xaddress1,s(xaddress1)−s(xaddress2)),Next(ICs)), if thereexistelementsm1, m2 of Data-LocSCM such thatx = 〈〈3, 〈m1,m2〉〉〉,
ChgSCM(ChgSCM(s,xaddress1,s(xaddress1) ·s(xaddress2)),Next(IC s)), if thereexistelementsm1, m2 of Data-LocSCM such thatx = 〈〈4, 〈m1,m2〉〉〉,
ChgSCM(ChgSCM(ChgSCM(s,xaddress1,s(xaddress1)÷s(xaddress2)),xaddress2,s(xaddress1)mods(xaddress2)),Next(IC s)), if thereexistelementsm1, m2 of Data-LocSCM such thatx = 〈〈5, 〈m1,m2〉〉〉,
ChgSCM(s,xaddressj), if thereexists an elementm1 of Instr-LocSCM such thatx = 〈〈6, 〈m1〉〉〉,
ChgSCM(s,(s(xaddressc) = 0→ xaddressj ,Next(IC s))), if thereexists an elementm1 of Instr-LocSCM and thereexists an elementm2 of Data-LocSCM such thatx = 〈〈7, 〈m1,m2〉〉〉,
ChgSCM(s,(s(xaddressc) > 0→ xaddressj ,Next(IC s))), if thereexists an elementm1 of Instr-LocSCM and thereexists an elementm2 of Data-LocSCM such thatx = 〈〈8, 〈m1,m2〉〉〉,
s, otherwise.

The function ExecSCM from InstrSCM into (∏(OKSCM))∏(OKSCM) is defined by:

(Def. 17) For every elementx of InstrSCM and for everySCM-state y holds ExecSCM(x)(y) =
Exec-ResSCM(x,y).
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[6] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.
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[9] Czesław Bylínski. The modification of a function by a function and the iteration of the composition of a function.Journal of Formalized
Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/funct_4.html.
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