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Summary. This paper contains the second part of the set of articles concerning the
theory of algebraic structures, based on [4, pp. 9-12] (pages 4–6 of the English edition).

First the basic structure〈F,+, ·,1,0〉 is defined. Following it the consecutive structures
are contemplated in details, including double loop, left quasi-field, right quasi-field, double
sided quasi-field, skew field and field. These structures are created by gradually augmenting
the basic structure with new axioms of commutativity, associativity, distributivity etc. Each
part of the article begins with the set of auxiliary theorems related to the structure under
consideration, that are necessary for the existence proof of each defined mode. Next the mode
and proof of its existence is included. If the current set of axioms may be replaced with a
different and equivalent one, the appropriate proof is performed following the definition of
that mode. With the introduction of double loop the “-” function is defined. Some interesting
features of this function are also included.
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The articles [5], [1], [2], and [3] provide the notation and terminology for this paper.
In this paperL is a non empty double loop structure.
Let us observe thatRF is multiplicative loop with zero-like.
Let L be an add-left-cancelable add-right-invertible non empty loop structure and leta be an

element ofL. The functor−a yielding an element ofL is defined by:

(Def. 7)1 a+−a = 0L.

Let L be an add-left-cancelable add-right-invertible non empty loop structure and leta, b be
elements ofL. The functora−b yielding an element ofL is defined as follows:

(Def. 8) a−b = a+−b.

One can verify that there exists a non empty double loop structure which is strict, Abelian,
add-associative, commutative, associative, distributive, non degenerated, left zeroed, right zeroed,
loop-like, well unital, and multiplicative loop with zero-like.

A double loop is a left zeroed right zeroed loop-like well unital multiplicative loop with zero-like
non empty double loop structure.

A left quasi-field is an Abelian add-associative right distributive non degenerated double loop.
In the sequela, b, c, x, y denote elements ofL.
One can prove the following propositions:

1Supported by RPBP.III-24.B5.
1 The definitions (Def. 1)–(Def. 6) have been removed.
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(12)2 L is a left quasi-field if and only if the following conditions are satisfied:

for everya holdsa+0L = a and for everya there existsx such thata+x = 0L and for alla,
b, c holds(a+b)+ c = a+(b+ c) and for alla, b holdsa+b = b+a and 0L 6= 1L and for
everya holdsa·1L = a and for everya holds1L ·a = a and for alla, b such thata 6= 0L there
existsx such thata · x = b and for alla, b such thata 6= 0L there existsx such thatx ·a = b
and for alla, x, y such thata 6= 0L holds if a ·x = a ·y, thenx = y and for alla, x, y such that
a 6= 0L holds if x ·a = y ·a, thenx = y and for everya holdsa ·0L = 0L and for everya holds
0L ·a = 0L and for alla, b, c holdsa· (b+c) = a·b+a·c.

(14)3 For every Abelian right distributive double loopG and for all elementsa, b of G holds
a·−b =−a·b.

(15) LetG be an Abelian add-left-cancelable add-right-invertible non empty loop structure and
a be an element ofG. Then−−a = a.

(16) For every Abelian right distributive double loopG holds(−1G) ·−1G = 1G.

(17) For every Abelian right distributive double loopG and for all elementsa, x, y of G holds
a· (x−y) = a·x−a·y.

A right quasi-field is an Abelian add-associative left distributive non degenerated double loop.
Next we state the proposition

(19)4 L is a right quasi-field if and only if the following conditions are satisfied:

for everya holdsa+0L = a and for everya there existsx such thata+x = 0L and for alla,
b, c holds(a+b)+ c = a+(b+ c) and for alla, b holdsa+b = b+a and 0L 6= 1L and for
everya holdsa·1L = a and for everya holds1L ·a = a and for alla, b such thata 6= 0L there
existsx such thata · x = b and for alla, b such thata 6= 0L there existsx such thatx ·a = b
and for alla, x, y such thata 6= 0L holds if a ·x = a ·y, thenx = y and for alla, x, y such that
a 6= 0L holds if x ·a = y ·a, thenx = y and for everya holdsa ·0L = 0L and for everya holds
0L ·a = 0L and for alla, b, c holds(b+c) ·a = b·a+c·a.

We use the following convention:G denotes a left distributive double loop anda, b, x, y denote
elements ofG.

We now state three propositions:

(21)5 (−b) ·a =−b·a.

(23)6 For every Abelian left distributive double loopG holds(−1G) ·−1G = 1G.

(24) (x−y) ·a = x ·a−y·a.

A double sided quasi-field is an Abelian add-associative distributive non degenerated double
loop.

In the sequela, b, c, x, y denote elements ofL.
Next we state the proposition

(26)7 L is a double sided quasi-field if and only if the following conditions are satisfied:

for everya holdsa+0L = a and for everya there existsx such thata+x= 0L and for alla, b,
c holds(a+b)+c= a+(b+c) and for alla, b holdsa+b= b+a and 0L 6= 1L and for every
a holdsa·1L = a and for everya holds1L ·a = a and for alla, b such thata 6= 0L there exists
x such thata·x= b and for alla, b such thata 6= 0L there existsx such thatx·a= b and for all
a, x, y such thata 6= 0L holds ifa·x= a·y, thenx= y and for alla, x, y such thata 6= 0L holds
if x·a= y·a, thenx= y and for everya holdsa·0L = 0L and for everya holds 0L ·a= 0L and
for all a, b, c holdsa· (b+c) = a·b+a·c and for alla, b, c holds(b+c) ·a = b·a+c·a.

2 The propositions (1)–(11) have been removed.
3 The proposition (13) has been removed.
4 The proposition (18) has been removed.
5 The proposition (20) has been removed.
6 The proposition (22) has been removed.
7 The proposition (25) has been removed.
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A skew field is an associative double sided quasi-field.
We now state the proposition

(32)8 L is a skew field if and only if the following conditions are satisfied:

for everya holdsa+0L = a and for everya there existsx such thata+x = 0L and for alla,
b, c holds(a+b)+ c = a+(b+ c) and for alla, b holdsa+b = b+a and 0L 6= 1L and for
everya holdsa ·1L = a and for everya such thata 6= 0L there existsx such thata · x = 1L

and for everya holdsa ·0L = 0L and for everya holds 0L ·a = 0L and for alla, b, c holds
(a ·b) · c = a · (b · c) and for alla, b, c holdsa · (b+ c) = a ·b+a · c and for alla, b, c holds
(b+c) ·a = b·a+c·a.

A field is a commutative skew field.
One can prove the following proposition

(34)9 L is a field if and only if the following conditions are satisfied:

for everya holdsa+0L = a and for everya there existsx such thata+x = 0L and for alla,
b, c holds(a+b)+ c = a+(b+ c) and for alla, b holdsa+b = b+a and 0L 6= 1L and for
everya holdsa·1L = a and for everya such thata 6= 0L there existsx such thata·x = 1L and
for everya holdsa ·0L = 0L and for alla, b, c holds(a ·b) · c = a · (b · c) and for alla, b, c
holdsa· (b+c) = a·b+a·c and for alla, b holdsa·b = b·a.
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8 The propositions (27)–(31) have been removed.
9 The proposition (33) has been removed.
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